DB2 UDB V8.1

aaaaaaaaaaaa

Graeme Birchall ©

DB2 UDB V8.1 Cookbook ©

Preface

Important!

If you didn't get this document directly from my website, you may have got an older edition.
The book gets changed all the time, so if you want the latest, go to the source. Also, the latest
edition is usually the best book to have, even if you are using an older version of DB2, asthe
examples are often much better.

This Cookbook isfor DB2 UDB for Windows, UNIX, LINX, OS/2, etc. It is not suitable for
DB2 for Z/OS or DB2 for AS/400. The SQL in these two products is quite different.

Disclaimer & Copyright

DISCLAIMER: This document is a best effort on my part. However, | screw up all the time,
so it would be extremely unwise to trust the contents in its entirety. | certainly don’'t. And if
you do something silly based on what | say, lifeistough.

COPYRIGHT: Y ou can make as many copies of this book as you wish. And | encourage you
to giveit to others. But you cannot séll it, nor change for it (other than to recover reproduction
costs), nor claim the material as your own, nor replace my name with another. Secondary dis-
tribution for gain is not allowed. Y ou are aso encouraged to use the related class notes for
teaching. In this case, you can charge for your time and materials (and your expertise). But
you cannot charge any licensing fee, nor claim an exclusive right of use.

TRADEMARKS: Lots of words in this document, like "DB2", are registered trademarks of
the IBM Corporation. And lots of other words, like "Windows", are registered trademarks of
the Microsoft Corporation. Acrobat is aregistered trademark of the Adobe Corporation.

Tools Used

This book was written on a Dell PC that came with oodles or RAM. All testing was done on
DB2Vv8.1. Word for Windows was used to write the document. Adobe Acrobat was used to
make the PDF file. As always, the book would have been written in half the time if Word for
Windows wasn't such a bunch of bug-ridden junk.

Book Binding

This book looks best when printed on a doubled sided laser printer and then suitably bound.
To thisend, | did some experiments a few years ago to figure out how to bind books cheaply
using commonly available materials. | came up with what | consider to be avery satisfactory
solution that is fully documented on page 279.

Author / Book

Author: Graene Birchall ©
Address: 1 River Court, Apt 1706
Jersey City NJ 07310-2007
Ph/ Fax: (201)-963-0071
Emai | : Graene_Bi rchal | @onpuserve. com
Web: http://ourworl d. conpuserve. conf honepages/ G aene_Bi rchal |

Title: DB2 UDB V8.1 SQ. Cookbook ©

Print: 2 January, 2003
#pages: 284

Preface 3

Graeme Birchall ©

Author Notes

Book History

This book originally began a series of notes for my own use. After awhile, friends began to
ask for copies, and enemies started to stedl it, so | decided to tidy everything up and give it
away. Over the years, new chapters have been added as DB2 has evolved, and | have found
new ways to solve problems. Hopefully, this process will continue for the foreseeable future.

Why Free

This book is free because | want people to use it. The more people that use it, and the more
that it helps them, then the more inclined | am to keep it up to date. For these reasons, if you
find this book to be useful, please share it with others.

Thisbook is free, rather than formally published, because | want to deliver the best product
that | can. If | had a publisher, | would have the services of an editor and a graphic designer,
but | would not be able to get to market so quickly, and when a product changes as quickly as
DB2 does, timeliness is important. Also, giving it away means that | am under no pressure to
make the book marketable. | simply include whatever | think might be useful.

Other Free Documents
The following documents are also available for free from my web site:

« SAMPLE SQL: The complete text of the SQL statements in this Cookbook are available
inan HTML file. Only the first and last few lines of the file have HTML tags, therest is
raw text, so it can easily be cut and paste into other files.

¢ CLASSOVERHEADS: Selected SQL examples from this book have been rewritten as
class overheads. This enables one to use this material to teach DB2 SQL to others. Use
this cookbook as the student notes.

* OLDER EDITIONS: This book is rewritten, and usually much improved, with each new
version of DB2. Some of the older editions are available from my website. The others can
be emailed upon request. However, the latest edition is the best, so you should probably
use it, regardless of the version of DB2 that you have.

Answering Questions

Asarule, | do not answer technical questions because | need to have alife. But I'm interested
in hearing about inter esting SQL problems, and also about any errors in this book. However
you may not get a prompt response, or any response. And if you are obviously an idiot, don't
be surprised if | point out (for free, remember) that you are idiot.

Graeme

DB2 UDB V8.1 Cookbook ©

Book Editions

Upload Dates

1996-05-08
1998-02-26
1998-08-19
1998-08-26
1998-09-03
1998-10-24
1998-10-25
1998-12-03
1999-01-25

1999-01-28
1999-02-15

1999-02-16
1999-03-16

1999-05-12
1999-09-16
1999-09-23
1999-10-06
2000-04-12
2000-09-19
2000-09-25
2000-10-26
2001-01-03
2001-02-06
2001-04-11
2001-10-24
2002-03-11
2002-08-20

2003-01-02

Book Editions

First edition of the DB2 V2.1.1 SQL Cookbook was posted to my web site.
Thisversion was is Postscript Print File format.

The DB2V2.1.1 SQL Cookbook was converted to an Adobe Acrobat file
and posted to my web site. Some minor cosmetic changes were made.

First edition of the DB2 UDB V5 SQL Cookbook was posted. Every SQL
statement was checked for V5, and there were new chapters on OUTER
JOIN and GROUPBY.

About 20 minor cosmetic defects were corrected in the V5 Cookbook.
Another 30 or so minor defects were corrected in the V5 Cookbook.

The Cookbook was updated for DB2 UDB V5.2.

About twenty minor typos and sundry cosmetic defects were fixed.

IBM published two versions of the V5.2 upgrade. The initial edition, which |
had used, evidently had alot of errors. It was replaced within aweek with a
more compl ete upgrade. This book was based on the later upgrade.

A chapter on Summary Tables (new in the Dec/98 fixpack) was added and
al the SQL was checked for changes.

Some more SQL was added to the new chapter on Summary Tables.

The section of stopping recursive SQL statements was compl etely rewritten,
and a new section was added on denormalizing hierarchical data structures.
Minor editorial changes were made.

Some bright spark at IBM pointed out that my new and improved section on
stopping recursive SQL was all wrong. Damn. | undid everything.

Minor editorial changes were made, and one new example (on getting multi-
ple counts from one value) was added.

DB2 V6.1 edition. All SQL was rechecked, and there were some minor addi-
tions - especially to summary tables, plus a chapter on "DB2 Dislikes".
Some minor layout changes were made.

Some errors fixed, plus hew section on index usage in summary tables.
Some typos fixed, and a couple of new SQL tricks were added.

DB2 V7.1 edition. All SQL was rechecked. The new areas covered are:
OLAP functions (whole chapter), ISO functions, and identity columns.
Some minor layout changes were made.

More minor layout changes.

Minor layout changes (to match class notes).

Minor changes, mostly involving the RAND function.

Document new features in latest fixpack. Also add a new chapter on Identity
Columns and completely rewrite sub-query chapter.

DB2 V7.2 fixpack 4 edition. Tested all SQL and added more examples, plus
anew section on the aggregation function.

Minor changes, mostly to section on precedence rules.

DB2 V8.1 (beta) edition. A few new functions are added, plus there is a new
section on temporary tables. The Identity Column and Join chapters were
completely rewritten, and the Whine chapter was removed.

DB2 V8.1 (post-Beta) edition. SQL rechecked. More examples added.

Graeme Birchall ©

Looking for Writing Software

This book iswritten using Microsoft Word for Windows. I've been using this product for over
five years, and it has aways been a bunch of bug-ridden junk. | could have written more than
twice as much in half thetime, if it weren't for al of the silly bugsin this product.

| finally given up waiting for Microsoft to fix everything, so if you can recommend (based on
your own experience) some book-writing software that is suitably powerful, and cheap, and
extremely reliable, then please send me a note. At the very least, the product needs to have the
following features: Indexing and table of contents, cross references, spell checker, grammar
checker, style sheets, and amacro language. A product that can automatically and intelli-
gently generate PDF, HTML, and plain text (for the examples) would be ideal.

DB2 UDB V8.1 Cookbook ©

Table of Contents

INTRODUCTION TO SQL..utviiiiieiiiiiitiieeee ettt e e e e e et e e e e e e e e enatareeeeaaeeean 13
SYNtAX DIiAgram CONVENTIONSeuiiitiiitieitiesteesteeteete et aeeesteesteesbeesbe e be e bt eabeaaseaaeeaaeeaaeeabeesbeebeeabeeabeeaseeaeesheesaeesbeenbeenbeebeenteens 13
SOQL COMPONENTS ..t 13

DB2 Objects.............
SELECT Statement .
FETCH FIRST Clause
Correlation Name.....

Renaming Fields
WWOTKING WL INUILS ...ttt bbbt e b ekt e bt e e bt e a bt ek et eh e e she e sh e e b e e b e e n bt enbeensesaeenaeenbeenbeenneas 19

Y@ I o =T [Tor | =TSR PPPPPRPRRPINt 20
Basic Predicate
Quantified Predicate
BETWEEN Predicate..
EXISTS Predicate....
IN Predicate.......
LIKE Predicate..
NULL Predicate ...
Precedence Rules ...

Temporary Tables - INTrOAUCTIONccoiuiii e et 26
Temporary Tables - iN SLALEMENTcooiiiiiii et e e 27
Common Table Expression................ .28

Full-Select ...30
Declared Global TemMpPOorary TableS........cooii e e e s 34
(07 NS I T o] =11 o o USROS PPPRPRRN 36
WALUES ClAUSEceeiiiiiiieiiiee ettt ettt a e et et e st e e ettt e et e e n b e e e nste e e e ennes 37

COUNT BIG..

COVARIANCE .. .46
GROUPING ... A7
MAX47
MIN48
REGRESSION.. .48

STDDEV

OLAP FUNCTIONS

Introduction...............
The Bad Old Days ...
OLAP Functions, Definition
Ranking Functions............c.ccceeveinene
Row Numbering Function..
Aggregation Function

SCALAR FUNCTIONS ..tttttttttuttttssersrsreerm.
Introduction
Sample Data.....

Scalar Functions, Definitions ..
ABS or ABSVAL

Table of Contents 7

Graeme Birchall ©

DEREF............
DECRYPT_BIN an
DIFFERENCE

DLURLPATHONLY .87
DLURLSCHEME....
DLURLSERVER.

INT or INTEGER.
JULIAN_DAY
LCASE or LOWER

MIDNIGHT_SECONDS98
MINUTE

MONTHNAME
MULTIPLY_ALT
NODENUMBER

PARTITION..
POSSTR...

DB2 UDB V8.1 Cookbook ©

TABLE_NAME
TABLE_SCHEMA

TIMESTAMP_FORMAT
TIMESTAMP_ISO

ORDER BY, GROUP BY, AND HAVINGcctuuiiiiiieeeeeeiiiie et e e e e e e e e eeeennen 121
Lo o V31T o TP 121
(0 1Y PSS PPPER 121
Sample Data........ 121

Order by Examples.
Notes....

GroupP BY @Nd HAVING ...eeiiiiieeiie ettt ettt et e e s e e st e e abe e e e e e eaenas 123
GROUP BY Sample Data
Simple GROUP BY Statements .
GROUPING SETS Statement
ROLLUP Statement...
CUBE Statement .
Complex Grouping Sets - Done Easy .

....135
Group By and Order By137
Group By in Join
COUNT and No Rows

Why Joins Matter.
Sample Views

N oY1 S} V1] - ¥ GO TP TP POUPRPPUPRRN
ON VS. WHERE ..o cevoeetseesseesse s eesssee s st 6880888085808 0888081588008

B8 Lo 1 T 137/ 0 1= USRS
Inner Join ...
Left Outer Joi
Right Outer Join
Full Outer Joins

Table of Contents 9

Graeme Birchall ©

Cartesian Product

JOTN NOTES ..ttt ettt e bt e oo h et e e e h b et e e e h et e e st et e e e a b et e e et et e e et n e e e abreeeane
Using the COALESCE Function
Listing non-matching rows only
Join in SELECT Phrase
Predicates and Joins, a Lesson
Joins - Things to Remember

SUB -QUERY ...tttttttttttsttsssessnnnns

SAMPIE TADIES ...ttt b e h bbb e R e bbb E e E e bbb

SUD-QUETY FIAVOULIS ...ttt et e hb bt e e st bt e e e nbb e e e e abb e e e ettt e e enbeeeeannnas
Sub-quUery SYNtaXcceeeeereeneeniesinennns
Correlated vs. Uncorrelated Sub-Queries.
Multi-Field Sub-Queries
Nested Sub-Queries

USAQE EXAMIPIES ..tttk ettt ekt e e ekttt e ettt e e e bt e e e e b bt e e e bb e e e bbe e e nreaean 168
TIUE I NONE IMAECK ...t bbbttt et e st e e et e eh et sh e she e eb e en b e ea bt eab e ehe e ehe e nbeenbe e beenbeenbeennesnnennes 168
True if ANY Match
True if TEN Match..
True if ALL match

UNION, INTERSECT, AND EXCEPT.. .173

Syntax Diagram
Sample Views

(0 L7: To [N (o] £ ST PP P PPPPPPPPPPPPPPPPPPPPPOE 174
Union & Union All...... 174
Intersect & Intersect Al
Except & Except All ..
Precedence Rules
Unions and Views

SUMMARY TABLEScii ittt 177

Summary Table Types

121 I T g oY =T g T=T) = L] o SRS 178
DDL Restrictions
Definition Only Summary Tables..
Refresh Deferred Summary Tables
Refresh Inmediate Summary Tables....
Usage Notes and Restrictions......

Multi-table Summary Tables..
Indexes on Summary Tables.

RO Y OUT OWN .ttt ekt e ettt e e bt e e e b e e et e e e br e e e s nneee s
Inefficient Triggers
Efficient Triggers

IDENTITY COLUMNS AND SEQUENCES......ccitiitttiieeeeeeeeiettiaeeeeeeeeasnnnnseeeeseeessnnnnaeeaaaees 195

Identity Columns
Rules and Restrictions
Altering Identity Column Options.. .
Gaps in the Sequence.............cccoeeeee. ..200
Roll Your Own - no Gaps in Sequence .
IDENTITY_VAL_LOCAL Function

ST=To [U1=] o [of = ST PP P PP PP P PP PPPPPPPPP
Getting the Sequence Value..
Multi-table Usage
Counting Deletes
Identity Columns vs. Sequences - a Comparison

RECURSIVE SQL ..o

10

Use Recursion To
When (Not) to Use Recursion...

HOW RECUISION WOTKS ..ottt et e et e e ree s
List Dependents of AAA

Notes & Restrictions
Sample Table DDL & DML

INErOAUCTONY RECUISION ..ttt ittt ettt ettt ettt b et e et e e ettt e e e kbt e e aabe e e e anbeeeanbeeesnbsneaeanes
List all Children #1
List all Children #2
List Distinct Children.
Show Item Level
Select Certain Levels...

DB2 UDB V8.1 Cookbook ©

Select Explicit Level
Trace a Path - Use Multiple Recursions..
Extraneous Warning Message

Logical HIErarChy FIAVOUTS......cceiiiiiiiee ettt e et e e e e e ettt e e e e e e snnaneeeeeeennnees 217
Divergent Hierarchy
Convergent Hierarchy
Recursive Hierarchy
Balanced & Unbalanced Hierarchies
Data & Pointer Hierarchies

Halting RECUISIVE PrOCESSING ..veeiiiiiiiiiiiiiiiee e ettt e e e e s sttt e e e e e e st e e e e e aantaneeaaeessananneeaaeesannnee 220
Sample Database .

Stop After "n" Levels..
Stop After "n" Levels - Remove Duplicates...
Stop After "n" Levels - Show Data Paths ...
Stop After "n" ROWSccovvviieiiennens
Find all Children, Ignore Data Loops...
Find all Children, Mark Data Loops
Find all Data Loops - Only
Stop if Data Loops
Working with Other Key Types
Stopping Simple Recursive Statements Using FETCH FIRST code

Clean Hierarchies and EffiCient JOINS.........uuiiiiiiiiiiiiiee e e e e e e
Introduction
Limited Update Solution
FUITUPOAE SOIULION ...t bbb bbbttt h bt h e s b e e b e e b e e b e e bt et be e s b e sb e b e b

FUN WITH SQL .ottt ettt se st e s seeteseese et esssassnatesaenestenneseseenes

Creating SAMPIE DALAeiiiieiieieii ettt ettt ettt e ettt e e ah e e e e abe e et e e e ante e e e aannas

(O R R Lo T o] - - TP PR
Create "n" Rows & Columns of Data...
Linear Data Generation
Tabular Data Generation........
Cosine vs. Degree - Table of Values
Make Reproducible Random Data
Make Random Data - Different Ranges ..
Make Random Data - Different Flavours
Make Random Data - Varying Distribution
Make Test Table & Data

LY=o S o o Tt =11 o o SRS
Find Overlapping Rows
Find Gaps in Time-Series.
Show Each Day in Gap

Other Fun Things.......
Convert Character to Numeric
Convert Timestamp to Numeric..
Selective Column Output..
Making Charts Using SQL ...
Multiple Counts in One Pass.......

Multiple Counts from the Same Row...
Find Missing Rows in Series / Count all Values
Normalize Denormalized Data....
Denormalize Normalized Data
Reversing Field Contents .
Stripping Characters............
Query Runs for "n" Seconds...

QUIRKS IN SQL

Trouble with Timestamps .
No Rows Match
Dumb Date Usage ..
RAND in Predicate.....
Date/Time Manipulation....
Use of LIKE on VARCHAR..
Comparing Weeks...............
DB2 Truncates, not Rounds ...
CASE Checks in Wrong Sequence
Division and Average
Date Output Order
Ambiguous Cursors ...
Floating Point Numbers .
Legally Incorrect SQL

Table of Contents 11

Graeme Birchall ©

F N T | SRR 271
(3]3S = 1a] o [1= Lo (=SSP SPR 271
Class Schedule
(D= o= Va1 =T o | PSSP
EMPIOYEE ... E b h e E e E R bbbt

Employee Activity ..
Employee Photo
Employee Resume

I TR ettt b bbb h R R £ R e R e R e bR eh R R e e R e e bbbt 274
(@40 =TT 2= (o o I TP 275
Project...... 275
Sales. 276
LS L1 PR 276
BOOK BINDINGiiiiiiiititiie e e ettt e e e e ettt e e e e e e et eeaa s e e e e e eeeesaa e e e e e eeeanbaaaeeaaaees 279
1IN] =5 SRR PPPPPN 284

12

DB2 UDB V8.1 Cookbook ©

Introduction to SQL

This chapter contains a basic introduction to DB2 UDB SQL. It also has humerous examples
illustrating how to use this language to answer particular business problems. However, it is
not meant to be a definitive guide to the language. Please refer to the relevant IBM manuals
for amore detailed description.

Syntax Diagram Conventions

This book uses railroad diagrams to describe the DB2 UDB SQL statements. The following
diagram shows the conventions used.

Start Continue
/ Default \

L r ALL AT an item
w SELECT t DISTINCT J t }

Resume / Repeat End \

F FROM % table name N
view name LWHERE expressionj_‘
« { and / or

Mandatory Optional
Figure 1, Syntax Diagram Conventions
Rules
¢ Upper CasetextisaSQL keyword.
« [talictextiseither a placeholder, or explained elsewhere.
« Backward arrows enable one to repeat parts of the text.
* A branch line going above the main lineis the default.

¢ A branch line going below the main lineis an optional item.

SQL Components

DB2 Objects

DB2 isarelationa database that supports a variety of object types. In this section we shall
overview those items which one can obtain data from using SQL.

Table

A tableisan organized set of columns and rows. The number, type, and relative position, of
the various columnsin the table is recorded in the DB2 catal ogue. The number of rowsin the
table will fluctuate as data is inserted and deleted.

The CREATE TABLE statement is used to define a table. The following example will define
the EMPLOY EE table, which is found in the DB2 sample database.

Introduction to SQL 13

CREATE TABLE EMPLOYEE

(EMPNO

, FI RSTNMVE
 MDINIT
, LASTNAME
, WORKDEPT
, PHONENO
, H REDATE
,JOB

, EDLEVEL
, SEX

, Bl RTHDATE
, SALARY
, BONUS

, COWM

CHARACTER (00006)
VARCHAR (00012)
CHARACTER (00001)
VARCHAR (00015)
CHARACTER (00003)
CHARACTER (00004
DATE

CHARACTER (00008)
SMALLI NT
CHARACTER (00001)
DATE

DECI MAL (00009, 02)
DECI MAL (00009, 02)
DECI MAL (00009, 02)

)
DATA CAPTURE NONE;

Figure 2, DB2 sample table - EMPLOYEE

View

NOT NULL
NOT NULL
NOT NULL
NOT NULL

NOT NULL

Graeme Birchall ©

A view is another way to look at the datain one or more tables (or other views). For example,
auser of the following view will only see those rows (and certain columns) in the EM-
PLOY EE table where the salary of a particular employee is greater than or equal to the aver-

age salary for their particular department.

CREATE VI EW EVMPLOYEE_VI EW AS

SELECT A EMPNO, A. FI RSTNME, A. SALARY, A. WORKDEPT

FROM EMPLOYEE A
VWHERE A. SALARY >=
(SELECT AV(QE B. SALARY)
FROM EMPLOYEE B

WHERE A. WORKDEPT = B. WORKDEPT) ;

Figure 3, DB2 sample view - EMPLOYEE_VIEW
A view need not always refer to an actual table. It may instead contain alist of values:

CREATE VIEW SI LLY (C1,

2,)

AS VALUES (11, ' AAA', SMALLINT(22))
, (12, ' BBB, SMALLINT(33))
,(13, 'CCC, NULL);

Figure 4, Define a view using a VALUES clause

Selecting from the above view works the same as selecting from a table;

SELECT C1, C2, C3
FROM SILLY
ORDER BY Cl1 ASC,

Figure 5, SELECT from a view that has its own data

We can go one step further and define a view that begins with a single value that is then ma-
nipulated using SQL to make many other values. For example, the following view, when se-
lected from, will return 10,000 rows. Note however that these rows are not stored anywherein

the database - they are instead created on the fly when the view is queried.

14

SQL Components

DB2 UDB V8.1 Cookbook ©

CREATE VI EW TEST_DATA AS
W TH TEMPL (NUML) AS
(VALUES (1)

UNI ON ALL

SELECT NUML + 1

FROM TEMP1

WHERE NUML < 10000)
SELECT *

FROM TEMPL;

Figure 6, Define a view that creates data on the fly
Alias

Andiasisan aternate name for atable or aview. Unlike aview, an alias can not contain any
processing logic. No authorization is required to use an alias other than that needed to access
to the underlying table or view.

CREATE ALI AS EMPLOYEE_AL1 FOR EMPLOYEE;
COW T,

CREATE ALI AS EMPLOYEE_AL2 FOR EMPLOYEE_AL1;
COW T,

CREATE ALIAS EMPLOYEE_AL3 FOR EMPLOYEE AL2;
COW T,
Figure 7, Define three aliases, the latter on the earlier

Neither aview, nor an alias, can be linked in arecursive manner (e.g. V1 pointsto V2, which
points back to V1). Also, both views and aliases still exist after a source object (e.g. atable)
has been dropped. In such cases, aview, but not an alias, is marked invalid.

SELECT Statement

A SELECT statement is used to query the database. It has the following components, not all
of which need be used in any particular query:

e SELECT clause. One of theseis required, and it must return at least one item, be it a col-
umn, aliteral, the result of a function, or something else. One must also access at least
one table, be that atrue table, atemporary table, aview, or an dias.

e WITH clause. This clauseis optional. Use this phrase to include independent SELECT
statements that are subsequently accessed in afina SELECT (see page 28).

« ORDER BY clause. Optionally, order the final output (see page 121).

e FETCH FIRST clause. Optionally, stop the query after "n" rows (see page 17). If an op-
timize-for valueis also provided, both values are used independently by the optimizer.

¢ READ-ONLY clause. Optionaly, state that the query is read-only. Some queries arein-
herently read-only, in which case this option has no effect.

« FOR UPDATE clause. Optionally, state that the query will be used to update certain col-
umns that are returned during fetch processing.

« OPTIMIZE FOR n ROWS clause. Optionally, tell the optimizer to tune the query assum-
ing that not all of the matching rowswill be retrieved. If afirst-fetch value is aso pro-
vided, both values are used independently by the optimizer.

Refer to the IBM manuals for a complete description of all of the above. Some of the more
interesting options are described below.

Introduction to SQL 15

Graeme Birchall ©

» SELECT statement 4}
L WITH L common table expression J;

} L ORDER BY clause J L FIRST FETCH clause J k READ-ONLY clause ﬂ
FOR UPDATE clause

X w

} LOPTIMIZE FOR clauseJ
Figure 8, SELECT Statement Syntax (general)
SELECT Clause

Every query must have at least one SELECT statement, and it must return at |east one item,
and access at |east one object.

pp SELECT %an item)
F FROM "[e_lble name :‘ - | }

view name correlation name J
alias name AS
(full select)

} L WHERE ex i j—‘ N
pression
t and /or

Figure 9, SELECT Statement Syntax
SELECT ltems

e Column: A column in one of the table being selected from.

e Literal: A litera value (e.g. "ABC"). Use the AS expression to name the literal.
e Special Register: A specia register (e.g. CURRENT TIME).

» Expression: An expression result (e.g. MAX(COL1*10)).

¢ Full Select: An embedded SELECT statement that returns asingle row.

FROM Objects

» Table: Either apermanent or temporary DB2 table.

* View: A standard DB2 view.

« Alias: A DB2 diasthat pointsto atable, view, or another alias.

* Full Select: An embedded SELECT statement that returns a set of rows.

Sample SQL
SELECT DEPTNO ANSVEER
, ADMRDEPT —=—=—=—=—=—=—=—=—==—========
,"ABC AS ABC DEPTNO ADVRDEPT ABC
FROV DEPARTMENT oo LTl L
VWHERE DEPTNAME LI KE ' 9% NG% BO1 AOO ABC
CRDER BY 1, D11 Do1 ABC

Figure 10, Sample SELECT statement

To select al of the columnsin atable (or tables) one can use the "*" notation:

16 SQL Components

DB2 UDB V8.1 Cookbook ©

SELECT * ANSVER (part of)
VHERE DEPTNAME LI KE ' % NG% DEPTNO etc. ..
ORDER BY 1; . eeeeee aeeaes >>>

BO1 PLANNI NG
D11 MANUFACTU

Figure 11, Use "*" to select all columnsin table

To select both individual columns, and al of the columns (using the "*" notation), in asingle
SELECT statement, one can still usethe "*", but it must fully-qualified using either the object
name, or a correlation name:

SELECT DEPTNO ANSVER (part of)

, DEPARTMENT. * ——=—=—=—=—=—=—=—=—=—=—=—=—==—=======
FROM DEPARTMENT DEPTNO DEPTNO etc. . .
WHERE ~ DEPTNAME LIKE ' % NG& mmmmme mmmee il >>>
ORDER BY 1; BO1 BO1 PLANNI NG

D11 D11 MANUFACTU
Figure 12, Select an individual column, and all columns

Use the following notation to select all the fieldsin atable twice:

SELECT DEPARTNMENT. * ANSWER (part of)
y EPAR-I—NENT * e ————————
FROM DEPARTIVENT DEPTNO etc. . .
WHERE DEPTNANVE LIKE "ONING% ameeee ammeo - >>>
ORDER BY 1; BO1 PLANNI NG

Figure 13, Select all columns twice

FETCH FIRST Clause

The fetch first clause limits the cursor to retrieving "n" rows. If the clause is specified and no
number is provided, the query will stop after the first fetch.

1
F FETCH FIRST ﬁ ROW ONLY
L integer — L ROWSJ }

Figure 14, Fetch First clause Syntax

If this clause is used, and there isno ORDER BY, then the query will simply return arandom
set of matching rows, where the randomness is afunction of the access path used and/or the
physical location of the rowsin the table:

SELECT YEARS ANSVEER
, NAMVE ——=—=—=—=—=—=—=—=—=—=—=========
, D YEARS NAME I D
FROV STAFF T T
FETCH FI RST 3 ROAS ONLY; 7 Sanders 10
8 Pernal 20
5 Mar enghi 30

Figure 15, FETCH FIRST without ORDER BY, gets random rows

WARNING: Using the FETCH FIRST clause to get the first "n" rows can sometimes return
an answer that is not what the user really intended. See below for details.
If an ORDER BY is provided, then the FETCH FIRST clause can be used to stop the query
after a certain number of what are, perhaps, the most desirable rows have been returned.
However, the phrase should only be used in this manner when the related ORDER BY
uniquely identifies each row returned.

Introduction to SQL 17

Graeme Birchall ©

To illustrate what can go wrong, imagine that we wanted to query the STAFF tablein order to
get the names of those three employees that have worked for the firm the longest - in order to
give them alittle reward (or possibly to fire them). The following query could be run:

SELECT YEARS ANSVEER
, NANVE o= =—=—=—==—====
, 1D YEARS NAME I D
FROM STAFF eeeees eeaceeees aee-
VWHERE YEARS |'S NOT NULL 13 Graham 310
ORDER BY YEARS DESC 12 Jones 260
FETCH FI RST 3 ROAS O\LY; 10 Hanes 50

Figure 16, FETCH FIRST with ORDER BY, gets wrong answer

The above query answers the question correctly, but the question was wrong, and so the an-
swer iswrong. The problem is that there are two employees that have worked for the firm for
ten years, but only one of them shows, and the one that does show was picked at random by
the query processor. Thisis amost certainly not what the business user intended.

The next query is similar to the previous, but now the ORDER ID uniquely identifies each
row returned (presumably as per the end-user’s instructions):

SELECT YEARS ANSVEER
, NAMVE ——=—=—=—=—=—=—=—=—=—=—=========
, 1D YEARS NAME I D
FROM STAFF eeeee e e e oo
WHERE YEARS |'S NOT NULL 13 Graham 310
CRDER BY YEARS DESC 12 Jones 260
, 1D DESC 10 Quill 290

FETCH FI RST 3 ROAS ONLY;
Figure 17, FETCH FIRST with ORDER BY, gets right answer

WARNING: Getting the first "n" rows from a query is actually quite a complicated prob-
lem. Refer to page 62 for a more complete discussion.

Correlation Name

The correlation nameis defined in the FROM clause and relates to the preceding object
name. In some cases, it is used to provide a short form of the related object name. In other
situations, it isrequired in order to uniquely identify logical tables when a single physical
table isreferred to twice in the same query. Some sample SQL follows:

SELECT A EMPNO ANSWER
FROV EMPLOYEE A EMPNO LASTNAME
,(SELECT MAX(EMPNO)AS EMPNO ~ cemme aoomooeooo
FROM EMPLOYEE) AS B 000340 GOUNOT

VHERE A. EMPNO = B. EMPNQO,
Figure 18, Correlation Name usage example

SELECT A. EMPNO ANSVEER
, A. LASTNAVE ———————————————————=—=—=
, B. DEPTNO AS DEPT EMPNO LASTNAVE DEPT
FROM EMPLOYEE Y e R R
, DEPARTMENT B 000090 HENDERSON E11
WHERE A. WORKDEPT = B. DEPTNO 000280 SCHNEI DER E11
AND A JOB <> ' SALESREP 000290 PARKER El1
AND B. DEPTNAME = ' OPERATI ONS’ 000300 SM TH E11
AND A. SEX IN("M,"F) 000310 SETRI GHT El1
AND B. LOCATI ON I'S NULL

ORDER BY 1;
Figure 19, Correlation Name usage example

18 SQL Components

DB2 UDB V8.1 Cookbook ©

Renaming Fields

The AS phrase can be used in a SELECT list to give afield adifferent name. If the new name
isaninvaid field name (e.g. contains embedded blanks), then place the name in quotes:

SELECT EMPNO AS E_NUM ANSVEER
,MDINIT AS "M I NT" —=—=—=—=—=—=—=—=—=—=—========
,PHONENO AS "..." ENUM MINT ...
FROV EMPLOYEE Dol Ll .
VHERE EMPNO < ' 000030’ 000010 | 3978
CORDER BY 1, 000020 L 3476

Figure 20, Renaming fields using AS

The new field name must not be qualified (e.g. A.C1), but need not be unique. Subsequent
usage of the new nameislimited asfollows:

e Itcanbeusedinan order by clause.
e It cannot be used in other part of the select (where-clause, group-by, or having).
e It cannot be used in an update clause.

¢ Itisknown outside of the full-select of nested table expressions, common table expres-
sions, and in aview definition.
CREATE VI EW EMP2 AS

SELECT EMPNO AS E_NUM
,MDINIT AS "M I NT"

,PHONENO AS "..."

FROM EMPLOYEE; ANSVER

SELECT * ENM MINT ...
FROM EMP2 LTl
WHERE "..." = ’'3978'; 000010 | 3978

Figure 21, View field names defined using AS

Working with Nulls

In SQL something can be true, false, or null. This three-way logic has to aways be consid-
ered when accessing data. To illustrate, if we first select all the rowsin the STAFF table
where the SALARY is < $10,000, then all the rows where the SALARY is>= $10,000, we
have not necessarily found all the rows in the table because we have yet to select those rows
wherethe SALARY isnull.

The presence of null valuesin atable can also impact the various column functions. For ex-
ample, the AV G function ignores null values when calculating the average of a set of rows.

This means that a user-calculated average may give a different result from a DB2 calculated
equivalent:

SELECT AVG(COW) AS Al ANSVER
FROM STAFF Al A2
WHERE ID < 100: il L.

796. 025 530. 68
Figure 22, AVG of data containing null values

Null values can also pop in columnsthat are defined as NOT NULL. This happens when a
field is processed using a column function and there are no rows that match the search crite-
ria

Introduction to SQL 19

Graeme Birchall ©

SELECT COUNT(*) AS NUM ANSVEER
, MAX(LASTNAME) AS MAX ========
FROM EMPLOYEE NUM MAX

VWHERE FI RSTNME = '’ FRED ; e oo

Figure 23, Getting a NULL value from a field defined NOT NULL
Why Nulls Exist

Null values can represent two kinds of data. In first case, the value is unknown (e.g. we do
not know the name of the person’s spouse). Alternatively, the value is not relevant to the
situation (e.g. the person does not have a spouse).

Many people prefer not to have to bother with nulls, so they use instead a specia value when
necessary (e.g. an unknown employee name is blank). Thistrick works OK with character
data, but it can lead to problems when used on numeric values (e.g. an unknown salary is set
to zero).

Locating Null Values

One can not use an equal predicate to locate those values that are null because a null value
does not actually equal anything, not even null, it issimply null. The ISNULL or ISNOT
NULL phrases are used instead. The following example gets the average commission of only
those rows that are not null. Note that the second result differs from the first due to rounding
loss.

SELECT AVG(COW) AS Al ANSVER

FROM STAFF Al A2

WHERE ID < 100 Tl il
AND COWM I'S NOT NULL; 796.025 796. 02

Figure 24, AVG of those rows that are not null

SQL Predicates

A predicate is used in either the WHERE or HAVING clauses of a SQL statement. It speci-
fies acondition that true, false, or unknown about arow or a group.

Basic Predicate

A basic predicate compares two values. If either valueis null, the result is unknown. Other-
wise theresult is either true or false.

expresion = expression }

> or] =

Figure 25, Basic Predicate syntax

20 SQL Predicates

DB2 UDB V8.1 Cookbook ©

SELECT I D, JOB, DEPT ANSVEER

FROM STAFF —=——=—=—=—=—=—=—======

WHERE JOB = 'Myr’ ID JOB DEPT
AND NOT JOB <> 'Myr’ B
AND NOT JOB = 'Sales’ 10 Myr 20
AND I D <> 100 30 Mr 38
AND ID >= 0 50 Mgr 15
AND I D <= 150 140 Mor 51
AND NOT DEPT = 50

ORDER BY |D;
Figure 26, Basic Predicate examples

Quantified Predicate
A quantified predicate compares one or more values with a collection of values.

expression SOME

4 . not - % kANY 57 (fullselect) —)
< ALL

>
<=
>=

— (£expression j—) —=

SOME
Loy —
Figure 27, Quantified Predicate syntax,1 of 2
SELECT ID, JOB ANSVER
VHERE JOB = ANY (SELECT JOB FROM STAFF) ID JOB
AND ID <= ALL (SELECT ID FROM STAFF)
ORDER BY I D; 10 Mgr
Figure 28, Quantified Predicate example, two single-value sub-queries
SELECT I D, DEPT, JOB ANSVER
FROM STAFF ——=—=—==========
VHERE (1 D, DEPT) = ANY ID DEPT JOB
(SELECT DEPT, ID R
FROM STAFF) 20 20 Sal es
ORDER BY 1;

Figure 29, Quantified Predicate example, multi-value sub-query
See the sub-query chapter on page 159 for more data on this predicate type.

A variation of this predicate type can be used to compare sets of values. Everything on both
sides must equal in order for the row to match:

} (rexpression l) = (v expression l) 4}
L not
Figure 30, Quantified Predicate syntax, 2 of 2
SELECT I D, DEPT, JOB ANSVER
FROM STAFF —==========
WHERE (1D, DEPT) = (30, 28) | D DEPT JOB
OR (1D, YEARS) = (90, 7) S
OR (DEPT,JOB) = (38, Myr') 30 38 Myr

ORDER BY 1;
Figure 31, Quantified Predicate example, multi-value check

Below is the same query written the old fashioned way:

Introduction to SQL 21

Graeme Birchall ©

SELECT I D, DEPT, JOB ANSVER
FROM STAFF —====—======
VWHERE (ID =30 AND DEPT = 28) | D DEPT JOB
OR (ID =90 AND YEARS = 740 J
OR (DEPT = 38 AND JOB ="Mr’) 30 38 Myr
ORDER BY 1,

Figure 32, Same query as prior, using individual predicates

BETWEEN Predicate
The BETWEEN predicate compares a value within arange of values.

Fﬁ exprsn. BETWEEN —— low val.—— AND—— high val. »
NOT B NOT]

Figure 33, BETWEEN Predicate syntax

The between check always assumes that the first value in the expression is the low value and
the second value is the high value. For example, BETWEEN 10 AND 12 may find data, but
BETWEEN 12 AND 10 never will.

SELECT I D, JOB ANSVEER
FROM STAFF —========
WHERE I D BETWEEN 10 AND 30 ID JOB
AND I D NOT BETWEEN 30 AND 10 -=e o----
AND NOT | D NOT BETWEEN 10 AND 30 10 Myr
CRDER BY | D 20 Sal es
30 Myr

Figure 34, BETWEEN Predicate examples

EXISTS Predicate
An EXISTS predicate tests for the existence of matching rows.

EXISTS — (fullselect)
> L or g
Figure 35, EXISTS Predicate syntax
SELECT ID, JOB ANSVEER
FROM STAFF A ————=—=—=—==
VWHERE EXI STS ID JOB
(SELECT * e e
FROM STAFF B 10 Myr
VWHERE B.1D = A ID 20 Sal es
AND B.ID < 50) 30 Mgr
ORDER BY 1D, 40 Sal es

Figure 36, EXISTS Predicate example
NOTE: See the sub-query chapter on page 159 for more data on this predicate type.

IN Predicate
The IN predicate compares one or more values with alist of values.

exprsn. B a IN (fullselect) }
NOT NOT '
(Lexpression L) —
expression
(i expression l) IN (fullselect) —!
L Not |

Figure 37, IN Predicate syntax

22 SQL Predicates

DB2 UDB V8.1 Cookbook ©

Thelist of values being compared in the IN statement can either be a set of in-line expres-
sions (e.g. ID in (10,20,30)), or a set rows returned from a sub-query. Either way, DB2 simply
goes through the list until it finds a match.

SELECT I D, JOB ANSVEER
FROM STAFF A —========
WHERE ID IN (10, 20, 30) ID JOB
AND IDIN (SELECTID eee aeee-
FROM STAFF) 10 Myr
AND I D NOT IN 99 20 Sal es
ORDER BY I D; 30 Myr

Figure 38, IN Predicate examples, single values

The IN statement can also be used to compare multiple fields against a set of rows returned
from a sub-query. A match exists when all fields equal. This type of statement is especially
useful when doing a search against a table with a multi-columns key.

WARNING: Be careful when using the NOT IN expression against a sub-query result. If
any one row in the sub-query returns null, the result will be no match. See page 159 for

more details.
SELECT EMPNO, LASTNAME ANSWER
VWHERE (EMPNO, ' AD3113') IN EMPNO LASTNAME
(SELECT EMPNO, PRAUONO eeeeee oo
FROM EMP_ACT 000260 JOHNSON
WHERE EMPTI ME > 0.5) 000270 PEREZ
ORDER BY 1;

Figure 39, IN Predicate example, multi-value

NOTE: See the sub-query chapter on page 159 for more data on this statement type.

LIKE Predicate
The LIKE predicate does partial checks on character strings.

}—ﬁ exprsn. LIKE —— pattern
NOT E NOT j L ESCAPE — patternJ

Figure 40, LIKE Predicate syntax

The per cent and under scor e characters have special meanings. The first means skip a string
of any length (including zero) and the second means skip one byte. For example:

* LIKE'AB_D%' Finds’ABCD’ and 'ABCDE, but not 'ABD’, nor 'ABCCD’.

e LIKE” X’ Finds XX’ and 'DX’, but not ’X’, nor '"ABX’, nor 'AXB".
* LIKE %X’ Finds'AX’, 'X’, and ’AAX’, but not XA’.
SELECT 1D, NAVE ANSVEER
FROM STAFF —=—============
VWHERE NAME LI KE ' S%’ D NAME
OR NAME LIKE ' _a_a% e o
OR NAME LIKE ' % %’ 130 Yamaguchi
ORDER BY | D, 200 Scoutten

Figure 41, LIKE Predicate examples
The ESCAPE Phrase

The escape character in a LIKE statement enables one to check for percent signs and/or un-
derscoresin the search string. When used, it precedes the "%’ or '’ in the search string indicat-
ing that it is the actual value and not the special character which isto be checked for.

Introduction to SQL 23

Graeme Birchall ©

When processing the LIKE pattern, DB2 works thus: Any pair of escape charactersistreated
astheliteral value (e.g. "++" meansthe string "+"). Any single occurrence of an escape char-
acter followed by either a"%" or a"_" meanstheliteral "%" or " " (e.g. "+%" means the

string "%"). Any other "%" or *_" isused asin anormal LIKE pattern.

LI KE STATEMENT TEXT VWHAT VALUES MATCH

LI KE ' AB% Fi nds AB, any string

LI KE ' AB% ESCAPE ' + Finds AB, any string

LI KE ’ AB+% ESCAPE ' +’ Fi nds AB%

LI KE ’ AB++’ ESCAPE ' +’ Fi nds AB+

LI KE ' AB+%8% ESCAPE ' + Fi nds AB% any string

LI KE ' AB++% ESCAPE ' + Fi nds AB+, any string

LI KE ' AB+++% ESCAPE ' +’ Fi nds AB+%

LI KE ' AB+++984 ESCAPE ' + Fi nds AB+% any string

LI KE ' AB+%+98% ESCAPE ' +’ Fi nds AB%®4 any string

LI KE ’ AB++++ ESCAPE ' +’ Fi nds AB++

LI KE ' AB+++++% ESCAPE ' + Fi nds AB++%

LI KE ' AB++++9% ESCAPE ' + Fi nds AB++, any string

LI KE ' AB+9%*++9% ESCAPE ' + Fi nds AB%, any string

Figure 42, LIKE and ESCAPE examples
Now for sample SQL.:

SELECT I D ANSVEER

FROM STAFF ======

WHERE |ID = 10 I D
AND ’'ABC LIKE ' AB%
AND 'A% LIKE 'A% ESCAPE '/’ 10

AND "A C LIKE'A _C ESCAPE '\’
AND A $' LIKE 'A$_$$' ESCAPE '$’;
Figure 43, LIKE and ESCAPE examples

NULL Predicate

The NULL predicate checks for null values. The result of this predicate cannot be unknown.
If the value of the expression is null, the result istrue. If the value of the expression is not
null, the result isfalse.

Fﬁ exprsn. IS NULL
NOT . not }

Figure 44, NULL Predicate syntax

SELECT | D, COWM ANSVER
V\HERE I D < 100 ID COW
AND ID IS NOT NULL

AND COW | S NULL 10 -
AND NOT COW | S NOT NULL 30 -
ORDER BY | D; 50 -

Figure 45, NULL Predicate examples

NOTE: Use the COALESCE function to convert null values into something else.

Precedence Rules

Expressions within parentheses are donefirst, then prefix operators (e.g. -1), then multiplica-
tion and division, then addition and subtraction. When two operations of equal precedence are
together (e.g. 1* 5/ 4) they are done from left to right.

24 SQL Predicates

DB2 UDB V8.1 Cookbook ©

Exanpl e: 555 + -22 |/ (12 - 3) * 66 ANSVER

N N N N N 423
5th 2nd 3rd 1st 4th

Figure 46, Precedence rules example

Be aware that the result that you get depends very much on whether you are doing integer or
decima arithmetic. Below is the above done using integer numbers:

SELECT (12 - 3) AS | NT1
, -22 1 (12 - 3) AS | NT2
, -22 / (12 - 3) * 66 AS INT3
555 + -22 / (12 - 3) * 66 AS |NT4
FROM SYSI BM SYSDUMWY1; ANSVER

I NT1 | NT2 I NT3 | NT4

9 -2 -132 423
Figure 47, Precedence rules, integer example

Note: DB2 truncates, not rounds, when doing integer arithmetic.

Here is the same done using decimal numbers:

SELECT (12.0 - 3) AS DECL
, -22 1 (12.0 - 3) AS DEC2
, -22 / (12.0 - 3) * 66 AS DEC3
555 + -22 / (12.0 - 3) * 66 AS DEC4
FROM SYSI BM SYSDUMWY1; ANSVEER

9.0 -2.4 -161.3 393.6
Figure 48, Precedence rules, decimal example

AND operations are done before OR operations. This means that one side of an OR isfully
processed before the other sideis begun. To illustrate:

SELECT * ANSVER>> CaLl CcoL2 TABLE1
FROM TABLE1 - +
VWHERE cal ='cC A AA | COoL1| COL2|
AND COLl >= ' A B BB [----]----
R COL2 >= ' AA C CC | A AA |
ORDER BY COL1; [B |BB |
[C [CC |
SELECT * ANSVER>> COL1 CcOL2 T +
FROM TABLE1
WHERE (COL1 ='C A AA
AND COLl >="A) B BB
OoR COL2 >= ' AA C cCc

ORDER BY CCL1,

SELECT * ANSWER>> COL1 COL2
FROM TABLE1
WHERE CO1 ='C C ccC

AND (COL1 >= ' A
OR COL2 >= 'AA)
ORDER BY COL1;

Figure 49, Use of OR and parenthesis

WARNING: The omission of necessary parenthesis surrounding OR operators is a very
common mistake. The result is usually the wrong answer. One symptom of this problem is
that many more rows are returned (or updated) than anticipated.

Introduction to SQL 25

Graeme Birchall ©

__|]
Temporary Tables - Introduction

How one defines atemporary table dependsin part upon how often, and for how long, one
intendsto useit:

« Within aquery, single use.

* Within aquery, multiple uses.

e For multiple queriesin one unit of work.

« For multiple queries, over multiple units of work, in one thread.

If oneintends to use atemporary table just once, it can be defined as a nested table expres-
sion. In the following example, we use atemporary table to sequence the matching rowsin
the STAFF table by descending salary. We then select the 2nd through 3rd rows:

SELECT ID
, SALARY
FROM (SELECT S *
, ROW NUMBER() OVER(ORDER BY SALARY DESC) AS SORDER
FROM STAFF S

WHERE ID < 200 ANSVEER
VWHERE SORDER BETWEEN 2 AND 3 ID SALARY
CRDER BY 1 D; f e emeeaoo-
50 20659. 80

140 21150. 00
Figure 50, Nested Table Expression

Imagine that one wanted to get the percentage contribution of the salary in some set of rows
in the STAFF table - compared to the total salary for the same. The only way to do thisisto
access the matching rows twice; Once to get the total salary (i.e. just one row), and then again
tojoin the total salary value to each individual salary - to work out the percentage.

Selecting the same set of rowstwicein asingle query is generally unwise because the dupli-
cate code increases the likelihood of typos being made. In the next example, the desired rows
arefirst placed in atemporary table. Then the sum salary is calculated and placed in another
temporary table. Finally, the two temporary tables are joined to get the percentage:

W TH ANSVEER
RQ/\B_V\ANTED AS ettt
(SELECT * | D NAME SALARY SUM SAL PCT
FROM STAFF oo emil iii il .
VWHERE I D < 100 70 Rot hman 16502. 83 34504.58 47

AND UCASE(NAMVE) LIKE * %% 90 Koonitz 18001. 75 34504.58 52

)
SUM SALARY AS
(SELECT SUM SALARY) AS SUM SAL
FROM ROAS_WANTED)
SELECT ID
, NAMVE
, SALARY
, SUM SAL
, INT((SALARY * 100) / SUM SAL) AS PCT
FROM ROWS_WANTED
, SUM SALARY
ORDER BY I D;

Figure 51, Common Table Expression

To refer to atemporary table in multiple SQL statements in the same thread, one has to define
adeclared global temporary table. An example follows:

26 Temporary Tables - Introduction

DB2 UDB V8.1 Cookbook ©

DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED

(DEPT SMALLI NT NOT NULL
, AVG_SALARY DEQC(7, 2) NOT NULL
, NUM_EMPS SMALLI NT NOT NULL)
ON COW T PRESERVE ROW5;

COW T,

I NSERT | NTO SESSI ON. FRED
SELECT DEPT

, AVG(SALARY)
, COUNT(*) ANSVER
FROM STAFF —o-————--————--=————=—=—=====
WHERE ID > 200 DEPT AVG _SALARY NUM_EMPS
GROUP BY DEPT; e
COW T, 10 20168. 08 3
51 15161. 43 3
SELECT * 66 17215. 24 5
FROM SESSI ON. FRED; 84 16536. 75 4

Figure 52, Declared Global Temporary Table

Unlike an ordinary table, a declared global temporary table is not defined in the DB2 cata-
logue. Nor isit sharable by other users. It only exists for the duration of the thread (or less)
and can only be seen by the person who created it. For more information, see page 34.

__|]
Temporary Tables - in Statement

Three general syntaxes are used to define temporary tablesin a query:

¢ UseaWITH phrase at the top of the query to define a common table expression.
« Defineafull-select in the FROM part of the query.

« Defineafull-select in the SELECT part of the query.

The following three queries, which are logically equivalent, illustrate the above syntax styles.
Observe that the first two queries are explicitly defined as |eft outer joins, while the last oneis
implicitly aleft outer join:

W TH STAFF_DEPT AS ANSVEER
(SELECT DEPT AS DEPT# —=—=—=—=—=—=——————=—=—=—=—=—=========
, MAX(SALARY) AS MAX_ SAL ID DEPT SALARY NAX_ SAL
FROM STAFF eee eeee eeeeeie e e
VWHERE DEPT < 50 10 20 18357.50 18357.50
GROUP BY DEPT 190 20 14252.75 18357.50
) 200 42 11508. 60 18352. 80
SELECT 1D 220 51 17654. 50 -
, DEPT
, SALARY
| MAX_SAL
FROM STAFF
LEFT OQUTER JO N
STAFF_DEPT
ON DEPT = DEPT#
WHERE NAME LI KE ' S%
CORDER BY | D,

Figure 53, Identical query (1 of 3) - using Common Table Expression

Introduction to SQL 27

Graeme Birchall ©

SELECT 1D ANSVEER
, DEPT ——=—=—=—=—=—=—=—=———=—=—=—=—=—=—=—=—======
, SALARY I D DEPT SALARY MAX_SAL
| MAX_SAL e e LT
FROM STAFF 10 20 18357.50 18357.50
LEFT OQUTER JO N 190 20 14252.75 18357.50
(SELECT DEPT AS DEPT# 200 42 11508. 60 18352. 80

, MAX(SALARY) AS MAX SAL 220 51 17654.50
FROM STAFF
WHERE ~ DEPT < 50
GROUP BY DEPT
) AS STAFF_DEPT

ON DEPT = DEPT#
VHERE NAME LI KE ' S%
ORDER BY I D,
Figure 54, Identical query (2 of 3) - using full-select in FROM
SELECT ID ANSVEER
, DEPT —===—=—-=——=————=—=—=—=—=—=—========
, SALARY ID DEPT SALARY MAX_SAL
" (SELECT MAX(SALARY) e e T
FROM STAFF S2 10 20 18357.50 18357.50
VHERE S1. DEPT = S2. DEPT 190 20 14252.75 18357.50
AND S2. DEPT < 50 200 42 11508.60 18352.80
GROUP BY DEPT) 220 51 17654. 50 -
AS MAX_SAL
FROM STAFF S1
VHERE NAME LI KE ' S%
ORDER BY | D

Figure 55, Identical query (3 of 3) - using full-select in SELECT

Common Table Expression

A common table expression is a named temporary table that is retained for the duration of a
SQL statement. There can be many temporary tables in asingle SQL statement. Each must
have a unique name and be defined only once.

All references to atemporary table (in agiven SQL statement run) return the same resullt.
Thisisunlike tables, views, or aliases, which are derived each time they are called. Also un-
like tables, views, or aliases, temporary tables never contain indexes.

WITH gigjentifier AS (select stmt) J—}
V L(col. names) l —E j

values stmt

Figure 56, Common Table Expression Syntax

Certain rules apply to common table expressions:

Column names must be specified if the expression is recursive, or if the query invoked
returns duplicate column names.

The number of column names (if any) that are specified must match the number of col-
umns returned.

If there is more than one common-table-expression, latter ones (only) can refer to the
output from prior ones. Cyclic references are not allowed.

A common table expression with the same name as areal table (or view) will replace the
real table for the purposes of the query. The temporary and real tables cannot be referred
to in the same query.

Temporary table names must follow standard DB2 table naming standards.

28 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

« Eachtemporary table name must be unique within a query.
e Temporary tables cannot be used in sub-queries.
Select Examples

In thisfirst query, we don't haveto list the field names (at the top) because every field already
has a name (given in the SELECT):

W TH TEMP1 AS ANSVER
, MAX(DEPT) AS MAX_DEPT MAX_NAVE MAX_DEPT
FROM 'STAFF LTl LT
) Yamaguchi 84
SELECT *
FROMV TEMPL;

Figure 57, Common Table Expression, using named fields

In this next example, the fields being selected are unnamed, so names have to be specified in
the WITH statement:

W TH TEMPL (MAX_NANE, MAX_DEPT) AS ANSVER
, MAX(DEPT) MAX_NAVE MAX_DEPT
FROM STAFF LTl LTl
) Yarmaguchi 84
SELECT *
FROM TEMPL;

Figure 58, Common Table Expression, using unnamed fields

A single query can have multiple common-table-expressions. In this next example we use two
expressions to get the department with the highest average saary:

W TH ANSVEER
TEMP1 AS —=========
(SELECT DEPT MAX_AVG

,AVG(SALARY) AS AVG SAL o LoiToo.
FROM STAFF 20865. 8625
GROUP BY DEPT),
TEMP2 AS

(SELECT MAX(AVG SAL) AS MAX_AVG
FROM TEMP1)

SELECT *

FROM TEMP2;

Figure 59, Query with two common table expressions

FY, the exact same query can be written using nested table expressions thus:

SELECT * ANSVER
FROM (SELECT MAX(AVG SAL) AS MAX_AVG S
FROM (SELECT DEPT MAX_AVG
,AVG SALARY) AS AVG SAL e-s-e-a--
FROM STAFF 20865. 8625
GROUP BY DEPT
) AS TEMP1
) AS TEVP2;

Figure 60, Same as prior example, but using nested table expressions

The next query first builds atemporary table, then derives a second temporary table from the
first, and then joins the two temporary tables together. The two tables refer to the same set of
rows, and so use the same predicates. But because the second table was derived from the first,
these predicates only had to be written once. This greatly ssimplified the code:

Introduction to SQL 29

Graeme Birchall ©

W TH TEMP1 AS ANSVEER
(SELECT |1 D —===—=—-=——=————=—=—=—=—=—=—========
, NAME ID DEPT SALARY MAX_SAL
,DEPT mee mmee eeemooo oo
, SALARY 10 20 18357.50 18357.50
FROM STAFF 190 20 14252.75 18357.50
VWHERE I D < 300 200 42 11508.60 11508. 60
AND DEPT <> 55 220 51 17654.50 17654. 50

AND NAME LI KE ' S%
AND DEPT NOT I N
(SELECT DEPTNUNMB

FROM ORG
VHERE DI VI SI ON = ' SOUTHERN
OR LOCATION = ' HARTFORD)

)
, TEMP2 AS
(SELECT DEPT
, MAX(SALARY) AS MAX_SAL
FROM TEMP1
GROUP BY DEPT

)
SELECT T1.1D
, T1. DEPT
, T1. SALARY
, T2. MAX_SAL
FROM TEMPL T1
, TEMP2 T2
WHERE T1.DEPT = T2. DEPT
ORDER BY T1.ID;

Figure 61, Deriving second temporary table from first
Insert Usage

A common table expression can be used to an insert-sel ect-from statement to build all or part
of the set of rows that are inserted:

| NSERT | NTO STAFF

W TH TEMP1 (MAX1) AS

(SELECT MAX(ID) + 1
FROM STAFF

)
SELECT MAX1,’A',1,’B,2,3,4
FROM TEMPI;
Figure 62, Insert using common table expression

Asit happens, the above query can be written equally well in the raw:

| NSERT | NTO STAFF
SELECT MAX(ID) + 1
VA LV1L,'B,2,3,4
FROM STAFF;
Figure 63, Equivalent insert (to above) without common table expression

Full-Select

A full-select is an alternative way to define atemporary table. Instead of using aWITH clause
at the top of the statement, the temporary table definition is embedded in the body of the SQL
statement. Certain rules apply:

e When used in a select statement, a full-select can either be generated in the FROM part of
the query - where it will return atemporary table, or in the SELECT part of the query -
where it will return a column of data.

« When the result of afull-select is atemporary table (i.e. in FROM part of aquery), the
table must be provided with a correlation name.

30 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

e When the result of afull-select isacolumn of data (i.e. in SELECT part of query), each
reference to the temporary table must only return asingle value.

Full-Select in FROM Phrase

The following query uses a nested table expression to get the average of an average - in this
case the average departmental salary (an average in itself) per division:

SELECT DI VI SION
, DEC(AVG(DEPT_AVG) , 7, 2) AS DI V_DEPT
, COUNT(*) AS #DPTS
, SUM #EMPS) AS #EMPS
FROM (SELECT DI VI SION
, DEPT
, AVG(SALARY) AS DEPT_AVG
, COUNT(*) AS #EMPS
FROM STAFF ANSVER
, mG s —————————————
VHERE DEPT = DEPTNUMB DI VISION DI V_DEPT #DPTS #EMPS
GROUP BY DIVISION smemmmmon cmiomin oie oo
, DEPT Cor por at e 20865. 86 1 4
) AS XXX Eastern 15670. 32 3 13
GROUP BY DI VI SI ON, M dwest 15905. 21 2 9
West ern 16875. 99 2 9
Figure 64, Nested column function usage
The next query illustrates how multiple full-selects can be nested inside each other:
SELECT 1D ANSVER
FROM (SELECT * ======
FROM (SELECT ID, YEARS, SALARY ID
FROM (SELECT * ---
FROM (SELECT * 170
FROM STAFF 180
VHERE DEPT < 77 230
YAS T1
VWHERE 1D < 300
)AS T2
VWHERE JOB LI KE ' C%
)AS T3
VWHERE = SALARY < 18000
)AS T4

WHERE = YEARS < 5;
Figure 65, Nested full-selects

A very common usage of afull-select isto join aderived table to areal table. In the following
example, the average salary for each department is joined to the individual staff row:

SELECT A. 1D
, A. DEPT
, A. SALARY
, DEC(B. AVGSAL, 7,2) AS AVG DEPT
FROM STAFF A

LEFT QUTER JO N

(SELECT DEPT AS DEPT
, AVG(SALARY) AS AVGSAL

FROM STAFF
GROUP BY DEPT
HAVING AVG(SALARY) > 16000
)AS B

N A. DEPT = B. DEPT

WHERE A ID < 40

ORDER BY A ID;
Figure 66, Join full-select to real table

Introduction to SQL

20 18357.50 16071. 52
20 18171.25 16071. 52
38 17506. 75 -

31

Graeme Birchall ©

Table Function Usage

If the full-select query has areference to arow in atable that is outside of the full-select, then
it needs to be written asa TABLE function call. In the next example, the preceding "A" table
isreferenced in the full-select, and so the TABLE function call is required:

SELECT A 1D ANSVEER
, A. DEPT —————————————————————=—=—=—=
, A. SALARY | D DEPT SALARY DEPTSAL
,B.DEPTSAL e eeee emeeeoe aeaao e
FROM STAFF A 10 20 18357. 50 64286. 10
, TABLE 20 20 18171. 25 64286. 10
(SELECT B. DEPT 30 38 17506. 75 77285. 55

, SUM B. SALARY) AS DEPTSAL
FROM STAFF B
WHERE ~ B.DEPT = A DEPT
GROUP BY B. DEPT
)AS B
WHERE A ID < 40
ORDER BY A. I D;

Figure 67, Full-select with external table reference

Below is the same query written without the reference to the A" table in the full-select, and
thus without a TABLE function call:

SELECT A ID ANSVEER
, A. DEPT ———=—=—=——=——=—=—=—=—=—=—=—=—=—==—=====
, A. SALARY | D DEPT SALARY DEPTSAL
'B.DEPTSAL Lo CoLo Lol T
FROM STAFF A 10 20 18357. 50 64286. 10
, (SELECT B. DEPT 20 20 18171. 25 64286. 10

, SUM B. SALARY) AS DEPTSAL 30 38 17506.75 77285.55
FROM STAFF B
GROUP BY B. DEPT
)AS B
WHERE A ID < 40
AND B.DEPT = A DEPT
ORDER BY A. I D;

Figure 68, Full-select without external table reference

Any externaly referenced table in afull-select must be defined in the query syntax (starting at
the first FROM statement) before the full-select. Thus, in the first example above, if the "A"
table had been listed after the "B" table, then the query would have been invalid.

Full-Select in SELECT Phrase
A full-select that returns a single column and row can be used in the SELECT part of a query:

SELECT ID ANSVEER
, (SELECT NAX(SALARY) | D SALARY MAXSAL
FROM STAFF e eeemeeeo oo
) AS MAXSAL 10 18357.50 22959. 20
FROM STAFF A 20 18171.25 22959. 20
VWHERE ID < 60 30 17506. 75 22959. 20
ORDER BY I D; 40 18006. 00 22959. 20

50 20659. 80 22959. 20
Figure 69, Use an uncorrelated Full-Select in a SELECT list

A full-select in the SELECT part of a statement must return only asingle row, but it need not
always be the same row. In the following example, the ID and SALARY of each employeeis
obtained - along with the max SALARY for the employee’s department.

32 Temporary Tables - in Statement

DB2 UDB V8.1 Cookbook ©

SELECT I D ANSVEER
‘SALARY oo —————————=——=—=
, (SELECT NAX(SALARY) I D SALARY MAXSAL
FROM STAFF B S mmmemees me--- -
VWHERE A. DEPT = B. DEPT 10 18357.50 18357.50
AS MAXSAL 20 18171.25 18357.50
FROM STAFF A 30 17506. 75 18006. 00
VHERE ID < 60 40 18006. 00 18006. 00
ORDER BY | D, 50 20659. 80 20659. 80
Figure 70, Use a correlated Full-Select in a SELECT list
SELECT 1D ANSVEER
, DEPT S-S =—=======
, SALARY | D DEPT SALARY 4 5
. (SELECT MAX(SALARY) e e e e
FROM STAFF B 10 20 18357.50 18357.50 22959. 20
WHERE B. DEPT = A. DEPT) 20 20 18171.25 18357.50 22959. 20
, (SELECT MAX(SALARY) 30 38 17506.75 18006. 00 22959. 20
FROM STAFF) 40 38 18006. 00 18006. 00 22959. 20
FROM STAFF A 50 15 20659. 80 20659. 80 22959. 20
WHERE ID < 60
ORDER BY I D;

Figure 71, Use correlated and uncorrelated Full-Selects in a SELECT list
INSERT Usage

The following query uses both an uncorrelated and correlated full-select in the query that
builds the set of rows to be inserted:

| NSERT | NTO STAFF
SELECT ID + 1
, (SELECT M N(NAME)
FROM STAFF)
, (SELECT DEPT
FROM STAFF S2
WHERE S2.1D = S1.1D - 100)

A L1, 2,3
FROM STAFF S1
WHERE ID =

(SELECT MAX(I D)
FROM STAFF);

Figure 72, Full-select in INSERT
UPDATE Usage

The following example uses an uncorrelated full-select to assign a set of workers the average
salary in the company - plus two thousand dollars.

UPDATE STAFF A ANSVEER: SALARY

SET SALARY = —====== =—================
(SELECT AVGE(SALARY) + 2000 | D DEPT BEFORE AFTER
FROM STAFF) L L

WHERE ID < 60; 10 20 18357.50 18675. 64

20 20 18171.25 18675. 64
30 38 17506.75 18675. 64
40 38 18006. 00 18675. 64
50 15 20659. 80 18675. 64

Figure 73, Use uncorrelated Full-Select to give workers company AVG salary (+$2000)

The next statement uses a correlated full-select to assign a set of workers the average salary
for their department - plus two thousand dollars. Observe that when there is more than one
worker in the same department, that they all get the same new salary. Thisis because the full-
select is resolved before the first update was done, not after each.

Introduction to SQL 33

Graeme Birchall ©

UPDATE STAFF A ANSVEER: SALARY
SET SALARY = —====== =====—==—==========
(SELECT AVGE SALARY) + 2000 | D DEPT BEFORE AFTER
FROM STAFF B e e e
WHERE A. DEPT = B. DEPT) 10 20 18357.50 18071.52
WHERE ID < 60; 20 20 18171.25 18071.52

30 38 17506. 75 17457.11
40 38 18006.00 17457.11
50 15 20659. 80 17482. 33

Figure 74, Use correlated Full-Select to give workers department AVG salary (+$2000)

NOTE: A full-select is always resolved just once. If it is queried using a correlated expres-
sion, then the data returned each time may differ, but the table remains unchanged.

Declared Global Temporary Tables

If we want to temporarily retain some rows for processing by subsequent SQL statements, we
can use a Declared Global Temporary Table. The type of table only exists until the thread is
terminated (or sooner). It is not defined in the DB2 catalogue, and neither its definition nor its
contents are visible to other users.

w DECLARE GLOBAL TEMPORARY TABLE —— table-name }

(icolumn-name — column-definition) }
LIKE table-name
—[view-name _ J

AS __ (__fullselect __) DEFINITION ONLY

klNCLUDING FCOLUMNj DEFAULTS
EXCLUDING J

—EXCLUDING IDENTITY [COLUMN ATTRIBUTES —
—COLUMN ATTRIBUTES }

LINCLUDING IDENTITY
r ON COMMIT DELETE ROWS —r NOT LOGGED = N

} | wiTH REPLACE | | ON cCOMMIT PRESERVE ROWS |

Figure 75, Declared Global Temporary Table syntax

Below is an example of declaring a global temporary table the old fashioned way:
DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED

(DEPT SMALLINT ~ NOT NULL
, AVG SALARY DEC(7,2) NOT NULL
. NUM_EMPS SMALLINT NOT NULL)

ON COMW T DELETE ROWS;
Figure 76, Declare Global Temporary Table - define columns

In the next example, the temporary table is defined to have exactly the same columns as the
existing STAFF table:

34 Declared Global Temporary Tables

DB2 UDB V8.1 Cookbook ©

DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED
LI KE STAFF | NCLUDI NG COLUMN DEFAULTS

W TH REPLACE

ON COW T PRESERVE ROWS;

Figure 77, Declare Global Temporary Table - like another table

In the next example, the temporary table is defined to have a set of columns that are returned
by a particular select statement. The statement is not actually run at definition time, so any
predicates provided areirrelevant:
DECLARE GLOBAL TEMPORARY TABLE SESSI ON. FRED AS
(SELECT DEPT
, MAX(| D) AS MAX_I D
, SUM SALARY) AS SUM SAL
FROM STAFF
VHERE NAMVE <> ' | DI OT’
GROUP BY DEPT)
DEFI NI TI ON ONLY
W TH REPLACE;

CREATE UNI QUE | NDEX SESSI ON. FREDX ON SESSI ON. FRED (DEPT);
Figure 78, Declare Global Temporary Table - like query output

Usage Notes

For a complete description of this feature, see the SQL reference. Below are some key points:

e Thetemporary table name can be any valid DB2 table name. The qualifier, if provided,
must be SESSION. If the qualifier is not provided, it is assumed to be SESSION. If the
temporary table aready exists, the WITH REPLACE clause must be used to override it.

* Anindex can be defined on a global temporary table. The qualifier (i.e. SESSION) must
be explicitly provided.

¢ Any column type can be used, except the following: BLOB, CLOB, DBCLOB, LONG
VARCHAR, LONG VARGRAPHIC, DATALINK, reference, and structured data types.

* One can choose to preserve or delete (the default) the rows when a commit occurs.

e Standard identity column definitions can be added if desired.

» Changes are not logged.

Before auser can create a declared global temporary table, a USER TEMPORARY table-

space that they have access to, has to be created. A typical definition follows:

CREATE USER TEMPCRARY TABLESPACE FRED
MANAGED BY DATABASE
USI NG (FI LE ’ C:\ DB2\ TEMPFRED\ FRED1’ 1000

, FILE * C:\ DB2\ TEMPFRED\ FRED2' 1000

, FI LE ’ C:\ DB2\ TEMPFRED\ FRED3’ 1000);

GRANT USE OF TABLESPACE FRED TO PUBLI G
Figure 79, Create USER TEMPORARY tablespace

Do NOT use to Hold Output

In general, do not use a Declared Global Temporary Table to hold job output data, especially
if thetableis defined ON COMMIT PRESERVE ROWS. If the job fails halfway through, the
contents of the temporary table will belost. If, prior to the failure, the job had updated and
then committed Production data, it may be impossible to recreate the lost output because the
committed rows cannot be updated twice.

Introduction to SQL 35

Graeme Birchall ©

CAST Expression

The CAST isexpression is used to convert one data type to another. It is similar to the various
field-type functions (e.g. CHAR, SMALLINT) except that it can also handle null values and
host-variable parameter markers.

F CAST (—E expression —————— AS — data-type —) 4}

NULL
parameter maker —

Figure 80, CAST expression syntax
Input vs. Output Rules

e Expression: If theinput is neither null, nor a parameter marker, the input data-typeis
converted to the output data-type. Truncation and/or padding with blanks occur asre-
quired. An error is generated if the conversionisillegal.

e Null: If theinput is null, the output is a null value of the specified type.

e Parameter Maker: Thisoption isonly used in programs and need not concern us here.
Seethe DB2 SQL Reference for details.

Examples

Usethe CAST expression to convert the SALARY field from decimal to integer:

SELECT ID ANSVEER
, SALARY —===—=—==—==—=—=—======
, CAST(SALARY AS | NTEGER) AS SAL2 I D SALARY SAL2
FROM STAFF Ll i
VHERE ID < 30 10 18357.50 18357
ORDER BY | D 20 18171.25 18171

Figure 81, Use CAST expression to convert Decimal to Integer

Use the CAST expression to truncate the JOB field. A warning message will be generated for
the second line of output because non-blank truncation is being done.

SELECT 1D ANSVER
,\]% e ————
, CAST(JOB AS CHAR(3)) AS JOB2 IDJOB JOB2
FROM STAFF T
WHERE ID < 30 10 Myr Myr
ORDER BY I D; 20 Sales Sal

Figure 82, Use CAST expression to truncate Char field

Use the CAST expression to make a derived field called JUNK of type SMALLINT where al
of the values are null.

SELECT 1D ANSVEER

, CAST(NULL AS SMALLI NT) AS JUNK —======

FROM STAFF 1D JUNK

VWHERE ID< 30 e e
ORDER BY | D 10
20

Figure 83, Use CAST expression to define SMALLINT field with null values
The CAST expression can also be used in ajoin, where the field types being matched differ:

36 CAST Expression

DB2 UDB V8.1 Cookbook ©

SELECT STF. 1D

, EMP. EMPNO
FROM STAFF STF
LEFT QUTER JO N

EMPLOYEE EMP

ON STF.ID =
AND EMP. JOB = ' MANAGER
VWHERE STF.ID < 60

ORDER BY STF. I D
Figure 84, CAST expressionin join

Of course, the same join can be written using the raw function:

SELECT STF. 1D

, EMP. EMPNO
FROM STAFF STF
LEFT QUTER JO N

EMPLOYEE EMP

ON STF.ID =
AND EMP. JOB = ' MANAGER
VWHERE STF.ID < 60

ORDER BY STF. I D,
Figure 85, Function usageinjoin

VALUES Clause

SMALLI NT(EMP. EMPNO)

CAST(EMP. EMPNO AS SMALLI NT)

10 -
20 000020
30 000030
40 -
50 000050

10 -
20 000020
30 000030
40 -
50 000050

The VALUES clause is used to define a set of rows and columns with explicit values. The
clause is commonly used in temporary tables, but can also be used in view definitions. Once
defined in atable or view, the output of the VALUES clause can be grouped by, joined to,
and otherwise used asiif it is an ordinary table - except that it can not be updated.

expression

y VALUES

v, ¥

Figure 86, VALUES expression syntax

expression
NULL

)

Each column defined is separated from the next using a comma. Multiple rows (which may
also contain multiple columns) are separated from each other using parenthesis and a comma.
When multiple rows are specified, all must share acommon data type. Some examples fol-

low:

VALUES 6

VALUES (6)

VALUES 6, 7, 8

VALUES (6), (7), (8)

VALUES (6,66), (7,77), (8, NULL)

Figure 87, VALUES usage examples
Sample SQL

<=1
<=1
<=1
<= 3
<=3

row,
row,
row,
r ows,
r ows,

1 colum
1 colum
3 col umms
1 colum
2 col unms

The next statement shall define atemporary table containing two columns and three rows.
The first column will default to type integer and the second to type varchar.

Introduction to SQL

Graeme Birchall ©

W TH TEMP1 (COL1, COL2) AS ANSVER
(VALUES (0, "AX) —========
.(1, 'BB) COoL1l COL2
(2, NULL)Y s
) 0 AA
SELECT * 1 BB
FROM TEMPL; 2 -

Figure 88, Use VALUES o define a temporary table (1 of 4)

If we wish to explicitly control the output field types we can define them using the appropri-
ate function. Thistrick does not work if even asingle valuein the target column is null.

W TH TEMP1 (COL1, COL2) AS ANSVER

(VALUES (DECI MAL(O ,3,1), "AA) —========
,(DECIMAL(1 ,3,1), 'BB) CoL1 COL2
, (DECI MAL(2 ,3,1), NULL) eeee -

) 0.0 AA

SELECT * 1.0 BB

FROM TEMPL; 2.0 -

Figure 89, Use VALUES o define a temporary table (2 of 4)

If any one of the values in the column that we wish to explicitly define has anull value, we
have to use the CAST expression to set the output field type:

W TH TEMP1 (COL1, COL2) AS ANSVEER
(VALUES (0, CAST(' AA AS CHAR(1))) —========
,(1, CAST('BB AS CHAR(1))) CcoLl CoL2
,(2, CAST(NULL AS CHAR(1))) aeee oo
) 0A
SELECT * 1B
FROM TEMPIL; 5 .

Figure 90, Use VALUES o define a temporary table (3 of 4)

Alternatively, we can set the output type for al of the not-null rowsin the column. DB2 will
then use these rows as a guide for defining the whole column:

W TH TEMPL (COL1, COL2) AS ANSVEER
(VALUES (0, CHAR(’ AA , l)) —========
(1, CHAR('BB,1)) CcoLl CoL2
(20 NwL) T T
) 0 A
SELECT * 1B
FROM TEMPL; 2 -

Figure 91, Use VALUES o define a temporary table (4 of 4)
More Sample SQL

Temporary tables, or (permanent) views, defined using the VALUES expression can be used
much like a DB2 table. They can be joined, unioned, and selected from. They can not, how-
ever, be updated, or have indexes defined on them. Temporary tables can not be used in a
sub-query.

WTH TEMP1 (COL1, COL2, COL3) AS ANSVEER

(VALUES (0, "AA, 0.00) ==========
(1, 'BB, 1.11) COL1B COLX
(2, °CC, 2.22) o

) 0 0.00

, TEMP2 (COL1B, COLX) AS 1 2.11

(SELECT COL1 2 4.22

,COL1 + COL3

FROM TEMP1

)

SELECT *

FROM TEMPZ2;

Figure 92, Derive one temporary table from another

38 VALUES Clause

DB2 UDB V8.1 Cookbook ©

CREATE VIEW SILLY (Cl, C2, C3)

AS VALUES (11, 'AAA', SMALLINT(22))
, (12, ' BBB, SMALLINT(33))
, (13, 'CCC, NULL);

COW T,
Figure 93, Define a view using a VALUES clause

W TH TEMP1 (COL1) AS ANSWER
(VALUES 0 ======
UNI ON ALL coLl
SELECT COL1 + 1
FROM TEMP1 0
WHERE COL1 + 1 < 100 1

) 2
SELECT * 3
FROM TEMPL; etc

Figure 94, Use VALUES defined data to seed a recursive SQL statement

All of the above examples have matched a VALUES statement up with a prior WITH expres-
sion, so as to name the generated columns. One doesn't have to use the latter, but if you don't,
you get a table with unnamed columns, which is pretty useless:

SELECT * ANSVEER
FROM (VALUES (123, ABC) —
,(234,"DEF) i

)AS TTT 234 DEF
ORDER BY 1 DESC; 123 ABC

Figure 95, Generate table with unnamed columns

CASE Expression

WARNING: The sequence of the CASE conditions can affect the answer. The first WHEN
check that matches is the one used.

CASE expressions enable one to do if-then-el se type processing inside of SQL statements.
There are two general flavours of the expression. In the first kind, each WHEN statement
does its own independent checking. In the second kind, all of the WHEN conditions are used
to do "equal” checks against a common reference expression. With both flavours, the first
WHEN that matches is the one chosen.

i WHEN —— search-condition —— THEN result :FL
—E NULL

V CASE — | 4

|__expression iWHEN — expression—— THEN _[result j—L
NULL

[ELSE NULL
}] END }
L ELSE — result J

Figure 96, CASE expression syntax

Notes & Restrictions
e If more than one WHEN condition is true, the first one processed that matchesis used.

e If no WHEN matches, the value in the EL SE clause applies. If no WHEN matches and
thereisno ELSE clause, the result isSNULL.

Introduction to SQL 39

Graeme Birchall ©

e There must be at least one non-null result in a CASE statement. Failing that, one of the
NULL results must be inside of a CAST expression.

¢ All result values must be of the same type.

¢ Functionsthat have an external action (e.g. RAND) can not be used in the expression part
of a CASE statement.

CASE Flavours

The following CASE is of the kind where each WHEN does an equal check against a com-
mon expression - in this example, the current value of SEX.

SELECT LASTNAMVE ANSVEER
, SEX AS SX ————————=——————=—=—=—=—=—=—
, CASE SEX LASTNAVE SX SEXX
WHEN ' F THEN ' FEMALEE ~ —emme e oo e
WHEN "M THEN ' MALE' JEFFERSON M MALE
ELSE NULL JOHNSON F FEMALE
END AS SEXX JONES M MALE
FROM EMPLOYEE
WHERE LASTNAME LI KE ' J%
ORDER BY 1;

Figure 97, Use CASE (type 1) to expand a value

The next statement islogically the same as the above, but it uses the aternative form of the
CASE notation in order to achieve the same result. In this example, the equal predicate is ex-
plicitly stated rather than implied.

SELECT LASTNAVE ANSVEER
, CASE LASTNAME SX SEXX
WHEN SEX = 'F THEN ' FEMALE - --------- R
VWHEN SEX = "M THEN ' MALE' JEFFERSON M MALE
ELSE NULL JOHNSON F FEMALE
END AS SEXX JONES M MALE
FROM EMPLOYEE
VWHERE LASTNAME LI KE " J%
CORDER BY 1,

Figure 98, Use CASE (type 2) to expand a value
More Sample SQL

SELECT LASTNAVE ANSVER
,MDINIT AS M ————=———————————=—=—=—=
, SEX AS SX LASTNAVE M SX MX
,CASE e - - -
WHEN MDINIT > SEX JEFFERSON J M M
THEN M DI NI T JOHNSON P F P
ELSE SEX JONES T M T
END AS MX
FROM EMPLOYEE
VWHERE LASTNAME LI KE " J%
ORDER BY 1,
Figure 99, Use CASE to display the higher of two values
SELECT COUNT(*) AS TOT ANSWER

, SUM CASE SEX WHEN 'F THEN 1 ELSE O END) AS #F =========
, SUM CASE SEX WHEN 'M THEN 1 ELSE O END) AS #M TOT #F #M
FROM EMPLOYEE R
VWHERE LASTNAME LI KE " J% ; 3 1 2

Figure 100, Use CASE to get multiple counts in one pass

40 CASE Expression

DB2 UDB V8.1 Cookbook ©

SELECT LASTNAMVE ANSVEER
, SEX —=——=—=—==—=—==—=—===
FROM EMPLOYEE LASTNAMVE SEX
WHERE LASTNAME LIKE "J% eeeeoea--- ---
AND CASE SEX JEFFERSON M
WHEN ' F THEN '’ JOHNSON F
VWHEN "M THEN '’ JONES M
ELSE NULL
END I'S NOT NULL
CORDER BY 1;
Figure 101, Use CASE in a predicate
SELECT LASTNAMVE ANSVEER
, |_ENGTH(RTRI |\/(LASTNANE)) AS LEN ——————————————————=—=—=—
, SUBSTR(LASTNAME, 1, LASTNAMVE LEN LASTNM
CASE e R
WHEN LENGTH(RTRI M LASTNAME)) JEFFERSON 9 JEFFER
> 6 THEN 6 JOHNSON 7 JOHNSO
ELSE LENGTH(RTRI M LASTNAVE)) JONES 5 JONES
END) AS LASTNM
FROM EMPLOYEE
WHERE LASTNAME LI KE " J%
CRDER BY 1;

Figure 102, Use CASE inside a function

The CASE expression can also be used in an UPDATE statement to do any one of several
alternative updatesto a particular field in asingle pass of the data:

UPDATE STAFF
SET COW = CASE DEPT
VWHEN 15 THEN COWM
VWHEN 20 THEN COWM
VWHEN 38 THEN
CASE
VWHEN YEARS < 5 THEN COW * 1.3
VWHEN YEARS >= 5 THEN COW * 1.4
ELSE NULL
END
ELSE COW
END
VWHERE COWM IS NOT NULL
AND DEPT < 50;

Figure 103, UPDATE statement with nested CASE expressions

* 1.1
* 1.2

W TH TEMPL (CL, C2) AS ANSVER
(VALUES ~ (88.9),(44,3),(22,0),(0,1)) ========
SELECT C1 ClL @2 3
, Q2 - - --
| CASE C2 88 9 9
WHEN 0 THEN NULL 44 3 14
ELSE Cl/C2 22 0 -
END AS C3 01 0

FROM TEMPL;

Figure 104, Use CASE to avoid divide by zero

At least one of theresultsin a CASE expression must be non-null. Thisis so that DB2 will
know what output type to make the result. One can get around this restriction by using the
CAST expression. It is hard to imagine why one might want to do this, but it works:

Introduction to SQL

Graeme Birchall ©

SELECT NAME ANSVER
y CASE s p———

WHEN NAME = LCASE(NAME) THEN NULL NAME DUVB

ELSE CAST(NULL AS CHAR(1)) mmmmmmm —---

END AS DUMB Sander s -

FROM STAFF Per nal -

WHERE | D < 30;
Figure 105, Slly CASE expression that always returns NULL

Problematic CASE Statements

The case WHEN checks are aways processed in the order that they are found. The first one
that matches is the one used. This means that the answer returned by the query can be affected
by the sequence on the WHEN checks. To illustrate this, the next statement uses the SEX
field (which is aways either "F"' or "M") to create anew field called SXX. In this particular
example, the SQL works as intended.

SELECT LASTNAME ANSVER
y SEX b ————————
, CASE LASTNAME SX SXX
WHEN SEX >= 'M THEN 'MAL' meemmmeee e e
WHEN SEX >= 'F' THEN ' FEM JEFFERSON M NMNAL
END AS SXX JOHNSON F FEM
FROMV EMPLOYEE JONES M MAL
VWHERE LASTNAME LIKE ' J%
ORDER BY 1;

Figure 106, Use CASE to derive a value (correct)

In the example below all of the valuesin SXX field are"FEM". Thisis not the same as what
happened above, yet the only difference isin the order of the CASE checks.

SELECT LASTNAMVE ANSVEER
y SEX —_— ===
, CASE LASTNAME SX SXX
WHEN SEX >= 'F THEN 'FEM ememeimeme o -
VWHEN SEX >= "M THEN ' MVAL’ JEFFERSON M FEM
END AS SXX JOHNSON F FEM
FROM EMPLOYEE JONES M FEM
VWHERE LASTNAME LIKE " J%
ORDER BY 1;

Figure 107, Use CASE to derive a value (incorrect)

In the prior statement the two WHEN checks overlap each other in terms of the values that
they include. Because the first check includes all values that also match the second, the latter
never getsinvoked. Note that this problem can not occur when all of the WHEN expressions
are equality checks.

42 CASE Expression

DB2 UDB V8.1 Cookbook ©

Column Functions

Introduction

By themselves, column functions work on the complete set of matching rows. One can use a
GROUPBY expression to limit them to a subset of matching rows. One can aso use themin
an OLAP function to treat individual rows differently.

WARNING: Be very careful when using either a column function, or the DISTINCT clause,
in a join. If the join is incorrectly coded, and does some form of Cartesian Product, the
column function may get rid of the all the extra (wrong) rows so that it becomes very hard
to confirm that the answer is incorrect. Likewise, be appropriately suspicious whenever
you see that someone (else) has used a DISTINCT statement in a join. Sometimes, users
add the DISTINCT clause to get rid of duplicate rows that they didn't anticipate and don't
understand.

Column Functions, Definitions

AVG

Get the average (mean) value of a set of non-null rows. The columns(s) must be numeric.
ALL isthe default. If DISTINCT is used duplicate values are ignored. If no rows match, the
null value is returned.

ALL
F AVG [expression
(L__bisTincT P) }
Figure 108, AVG function syntax
SELECT AVG(DEPT) AS Al ANSVER
, AVG(DI STI NCT DEPT) AS A3 Al A2 A3 A4 A5
, AVQ DEPT/ 10) AS A4 A
, AVG(DEPT) / 10 AS A5 41 41 40 3 4

FROM STAFF
HAVI NG AVE DEPT) > 40;

Figure 109, AVG function examples

WARNING: Observe columns A4 and A5 above. Column A4 has the average of each
value divided by 10. Column A5 has the average of all of the values divided by 10. In the
former case, precision has been lost due to rounding of the original integer value and the
result is arguably incorrect. This problem also occurs when using the SUM function.

Averaging Null and Not-Null Values

Some database designers have an intense and irrational dislike of using nullable fields. What
they do instead is define al columns as not-null and then set the individual fieldsto zero (for
numbers) or blank (for characters) when the value is unknown. This solution is reasonablein
some situations, but it can cause the AV G function to give what is arguably the wrong an-
swer.

One solution to this problem is some form of counseling or group therapy to overcome the
phobia. Alternatively, one can use the CASE expression to put null values back into the an-
swer-set being processed by the AV G function. The following SQL statement uses a modified
version of the IBM sample STAFF table (all null COMM values were changed to zero) to
illustrate the technique:

Column Functions 43

Graeme Birchall ©

UPDATE STAFF
SET COW = 0
VHERE COWM | S NULL;

SELECT AVG(SALARY) AS SALARY ANSVEER
, AVG(CASE COMM SALARY COVML COWMVR
WHEN O THEN NULL sl D T
ELSE COW 16675.6 351.9 513.3
END) AS COMM2
FROM STAFF;

UPDATE STAFF
SET COWM = NULL
WHERE COWM = 0;

Figure 110, Convert zero to null before doing AVG

The COMMZ2 field above is the correct average. The COMM 1 field isincorrect because it has
factored in the zero rows with really represent null values. Note that, in this particular query,
one cannot use a WHERE to exclude the "zero" COMM rows because it would affect the av-
erage salary value.

Dealing with Null Output

The AVG, MIN, MAX, and SUM functions al return a null value when there are no match-
ing rows. One use the COALESCE function, or a CASE expression, to convert the null value
into a suitable substitute. Both methodologies are illustrated below:
SELECT COUNT(*) AS Cl1 ANSVEER
,AVG(SALARY) AS Al ——=—=—=—=—=—=—=—=—=
, COALESCE(AVG(SALARY), 0) AS A2 Cl Al A2 A3
, CASE R
WHEN AVG(SALARY) 1S NULL THEN 0 0 - 0O
ELSE AVGE SALARY)
END AS A3

FROV STAFF
WHERE ~ ID < 10;

Figure 111, Convert null output (from AVG) to zero
AVG Date/Time Values

The AV G function only accepts numeric input. However, one can, with a bit of trickery, also
use the AV G function on adate field. First convert the date to the number of days since the
start of the Current Era, then get the average, then convert the result back to a date. Please be
aware that, in many cases, the average of a date does not really make good business sense.
Having said that, the following SQL gets the average birth-date of all employees:

SELECT AVG(DAYS(Bl RTHDATE)) ANSVER
FROM EMPLOYEE; 1 2

709113 06/ 27/ 1942
Figure 112, AVG of date column

Time data can be manipulated in asimilar manner using the MIDNIGHT_SECONDS func-
tion. If oneisreally desperate (or silly), the average of a character field can aso be obtained
using the ASCII and CHR functions.

Average of an Average

In some cases, getting the average of an average gives an overflow error. Inasmuch as you
shouldn’t do this anyway, it is no big deal:

44 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT AVG(AVG SAL) AS AVG AVG ANSVER
FROM (SELECT DEPT —==—=============
, AVG(SALARY) AS AVG_SAL <Overflow error>
FROM STAFF
GRCUP BY DEPT
) AS XXX;

Figure 113, Select average of average

CORRELATION

I don't know athing about statistics, so | haven't a clue what this function does. But | do know
that the SQL Reference iswrong - because it says the value returned will be between 0 and 1.
| found that it is between -1 and +1 (see below). The output typeisfloat.

}—[CORRELATION (expression , expression) }
CORR
Figure 114, CORRELATION function syntax

W TH TEMP1(COL1, COL2, COL3, COL4) AS ANSVEER
(VALUES (0 s 0 s 0 , RAND(l)) ————=—————=——=——=—————————=—=—=—==—
UNI ON ALL COR11 COR12 COR23 COR34
SELECT COL1 + 1 et emmme ememe eeao-
,CoL2 - 1 1.000 -1.000 -0.017 -0.005
» RAND()
, RAND()
FROM TEMP1
WHERE COL1 <= 1000

)
SELECT DEC(CORRELATI ON(COL1, COL1

),5,3) AS CORL1
, DEC{ CORRELATI ON(COL1, COL2), 5, 3) AS CORL2
, DEC(CORRELATI ON(COL2, COL3), 5,3) AS COR23
. DEC{ CORRELATI ON(COL3, COL4), 5.3) AS COR34

FROM TEMPL;
Figure 115, CORRELATION function examples

COUNT

Get the number of valuesin a set of rows. The result is an integer. The value returned depends
upon the options used:

¢ COUNT(*) gets acount of matching rows.
e COUNT (expression) gets a count of rows with a non-null expression value.
¢ COUNT(ALL expression) isthe same as the COUNT (expression) statement.

¢ COUNT(DISTINCT expression) gets acount of distinct non-null expression values.

ALL
i
F COUNT (BISTINGT expression) }

*

Figure 116, COUNT function syntax

SELECT COUNT(*) AS Cl ANSVER
, COUNT(| NT(COW 10)) AS C2 —================
' COUNT(ALL | NT(COMM 10)) AS C3 ClLC2 3 C4C5 B
' COUNT(DI STI NCT | NT(COMM 10)) AS C4 DT
, COUNT(DI STI NCT | NT(COWM)) AS C5 35 24 24 19 24 2
' COUNT(DI STI NCT | NT(COVM))/ 10 AS Cb

FROM STAFF;

Figure 117, COUNT function examples

Column Functions 45

Graeme Birchall ©

There are 35 rows in the STAFF table (see C1 above), but only 24 of them have non-null
commission values (see C2 above).

If no rows match, the COUNT returns zero - except when the SQL statement also contains a
GROUPBY. Inthislatter case, the result is no row.

SELECT 'NO GP-BY' AS C1 ANSVER

FROM STAFF c1 c2
VHERE ID=-1 e -
UNI ON NO GP-BY O

SELECT ' GROUP-BY AS Cl
, COUNT(*) AS C2

FROM STAFF

WHERE ID= -1

GROUP BY DEPT;

Figure 118, COUNT function with and without GROUP BY

COUNT_BIG

Get the number of rows or distinct valuesin a set of rows. Use this function if the result istoo
large for the COUNT function. The result is of type decimal 31. If the DISTINCT optionis
used both duplicate and null values are eliminated. If no rows match, the result is zero.

AL ———
F COUNT_BIG (EDISTINCT 1

*

Figure 119, COUNT _BIG function syntax

SELECT COUNT_BI G(*)
, COUNT_BI G DEPT)
, COUNT_BI G(DI STI NCT DEPT)
, COUNT_BI G(DI STI NCT DEPT/ 10)
, COUNT_BI G(DI STI NCT DEPT)/10 AS
FROM STAFF;

Figure 120, COUNT_BIG function examples

expression) }

AS C1
AS C2
AS C3 ClL &2 &G &4 G
AS 4
C5

COVARIANCE

Returns the covariance of a set of number pairs. The output type is float.

}—[COVARIANCE (expression , expression) }
COVAR

Figure 121, COVARIANCE function syntax

WTH TEMPL(CL, C2, C3, C4) AS ANSVER

(VALUES (O , 0, 0, RAND(l)) ——==—====

UNI ON ALL Covii Covi2 Cov23 Cov34

SELECT CL + 1 oooololo TTUTToL TTTTTLL UL
,C2 -1 83666. -83666. -1.4689 -0.0004
» RAND()
, RAND()

FROM TEMP1

WHERE C1 <= 1000

)
SELECT DEC(COVARI ANCE(C1, C1),

),6,0) AS COvil
, DEC(COVARI ANCE(C1, C2), 6, 0) AS COV12
. DEC{ COVARI ANCE(C2, C3) . 6, 4) AS COV23
. DEC{ COVARI ANCE(C3, C4) . 6, 4) AS COV34

FROM TEMPL;
Figure 122, COVARIANCE function examples

46 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

GROUPING

The GROUPING function is used in CUBE, ROLLUP, and GROUPING SETS statements to
identify what rows come from which particular GROUPING SET. A vaue of 1 indicates that
the corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

F GROUPING (

Figure 123, GROUPING function syntax

expression) }

SELECT DEPT ANSVEER
, AV SALARY) AS SALARY ——=—=====—========
, GROUPI NG(DEPT) AS DF DEPT SALARY DF
FROM STAFF eeee eeeee e ok
GROUP BY ROLLUP(DEPT) 10 20865. 86

ORDER BY DEPT,; 15 15482. 33

N
N
[EnY
N
a1
©
N
N
»
RPOOOOOOOOo

Figure 124, GROUPING function example

NOTE: See the section titled "Group By and Having" for more information on this function.

MAX

Get the maximum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null valueis returned.

ALL
F MAX [expression
(L DISTINCT P) }
Figure 125, MAX function syntax
SELECT MAX(DEPT) ANSVER
, MAX(DI STI NCT DEPT) 1 2 3 4
, MAX(DI STI NCT DEPT/ 10) fee mee eee —es
FROM STAFF; 84 84 84 8

Figure 126, MAX function examples
MAX and MIN usage with Scalar Functions

Several DB2 scalar functions convert avalue from one format to another, for example from
numeric to character. The function output format will not always shave the same ordering
sequence as the input. This difference can affect MIN, MAX, and ORDER BY processing.

SELECT MAX(HI REDATE) ANSVEER
, MAX(CHAR(HI REDATE, USA)) 1 2 3

FROM EMPLOYEE, eeemmmmio i e
09/ 30/ 1980 09/ 30/ 1980 12/ 15/ 1976

Figure 127, MAX function with dates

In the above the SQL, the second field gets the MAX before doing the conversion to character
whereas the third field works the other way round. In most cases, the later is wrong.

In the next example, the MAX function is used on a small integer value that has been con-
verted to character. If the CHAR function is used for the conversion, the output is left justi-
fied, which resultsin an incorrect answer. The DIGITS output is correct (in this example).

Column Functions 47

Graeme Birchall ©

SELECT MAX(| D) AS I D ANSVEER
, MAX(CHAR(I D)) AS CHR —==================
'MAX(DI G TS(1D)) AS DI G ID CHR DG
FROM ' STAFF. LT
350 90 00350

Figure 128, MAX function with numbers, 1 of 2

The DIGITS function can aso give the wrong answer - if the input datais part positive and
part negative. Thisis because this function does not put asign indicator in the output.

SELECT MAX(ID - 250) AS ID ANSVER
, I\/AX(CHAR(| D - 250)) AS CHR ——=—=—=—=—=—==—=—==—=—===—=====
'MAX(DI G TS(I1D - 250)) AS DI G ID CHR DIG

FROM ' STAFF; 0T T L T

100 90 0000000240
Figure 129, MAX function with numbers, 2 of 2

WARNING: Be careful when using a column function on a field that has been converted
from number to character, or from date/time to character. The result may not be what you
intended.

MIN

Get the minimum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null value is returned.

ALL
F MIN [expression
(L DISTINCT P) }
Figure 130, MIN function syntax
SELECT M N(DEPT) ANSVER
, M N(DI STI NCT' DEPT) 1 2 3 4
, M N(DI STI NCT DEPT/ 10) R
FROM STAFF; 10 10 10 1

Figure 131, MIN function examples

REGRESSION

The various regression functions support the fitting of an ordinary-least-squares regression
line of theformy = a* x + b to aset of number pairs.

V

REGR_AVGX — — (—— expression, expression —) —}
REGR_AVGY
REGR_COUNT
REGR_INTERCEPT

—[REGR_ICPT J
REGR_R2

REGR_SLOPE
REGR_SXX

REGR_SXY

REGR_SYY
Figure 132, REGRESSION functions syntax

48 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Functions

e REGR_AVGX returns a quantity that than can be used to compute the validity of the re-
gression model. The output is of type float.

« REGR_AVGY (see REGR_AVGX).

« REGR_COUNT returns the number of matching non-null pairs. The output isinteger.
* REGR_INTERCEPT returns the y-intercept of the regression line.

* REGR_R2 returns the coefficient of determination for the regression.

* REGR_SL OPE returns the slope of the line.

+ REGR_SXX (see REGR_AVGX).

* REGR_SXY (see REGR_AVGX).

+ REGR_SYY (see REGR_AVGX).

Seethe IBM SQL Reference for more details on the above functions.

ANSVERS
SELECT DEC(REGR_SLOPE(BONUS, SALARY) ,7,5) AS R SLOPE 0.01710
, DEC(REGR | NTERCEPT(BONUS, SALARY) , 7, 3) AS R I CPT 100. 871
, I NT(REGR_COUNT(BONUS, SALARY)) AS R_COUNT 3
, | NT(REGR_AVGX(BONUS, SALARY)) AS R AVGX 42833
. | NT(REGR_AVGY(BONUS, SALARY)) AS RAVGY 833
, | NT(REGR_SXX(BONUS, SALARY)) AS R SXX 296291666
, I NT(REGR_SXY(BONUS, SALARY)) AS R _SXY 5066666
, | NT(REGR_SYY(BONUS, SALARY)) AS R SYY 86666

FROM EMPLOYEE
VWHERE WORKDEPT = ' A0O’ ;

Figure 133, REGRESS ON functions examples

STDDEV

Get the standard deviation of a set of numeric values. If DISTINCT is used, duplicate values
areignored. If no rows match, the result is null. The output format is double.

F STDDEV (Egll_;TII\ICT—J expression) }
Figure 134, STDDEYV function syntax
ANSVER
Ast s2 s3 s4
SELECT AVG(DEPT) AS Al 41 +2.3522355E+1 23.5 23.5 24.1

, STDDEV(DEPT) AS S1

, DEC(STDDEV(DEPT) , 3, 1) AS S2

, DEC(STDDEV(ALL DEPT), 3,1) AS S3

, DEC({ STDDEV(DI STI NCT DEPT), 3,1) AS $4
FROM STAFF;

Figure 135, STDDEYV function examples

SUM

Get the sum of a set of numeric values If DISTINCT is used, duplicate values are ignored.
Null values are always ignored. If no rows match, the result is null.

Column Functions 49

Graeme Birchall ©

ALL
F SUM [expression
(L DISTINCT P) }
Figure 136, SUM function syntax
SELECT SUM DEPT) AS S1 ANSVEER
,SUM ALL uEPT) AS S2 ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—======
, SUM DI STI NCT DEPT) AS S3 S1 S2 S3 4 S5
, SUM DEPT/ 10) AS S4
, SUM DEPT) / 10 AS S5 1459 1459 326 134 145
FROM STAFF;

Figure 137, UM function examples

WARNING: The answers S4 and S5 above are different. This is because the division is
done before the SUM in column S4, and after in column S5. In the former case, precision
has been lost due to rounding of the original integer value and the result is arguably incor-
rect. When in doubt, use the S5 notation.

VAR or VARIANCE

Get the variance of a set of numeric values. If DISTINCT is used, duplicate values areig-
nored. If no rows match, the result is null. The output format is double.

ALL
VARIANCE (| — expression) }
’ L DISTINCT
VAR Q

Figure 138, VARIANCE function syntax

ANSVER
Aavi V2 V3 va
SELECT AVG(DEPT) AS Al 41 +5.533012244E+2 553 553 582

, VARI ANCE(DEPT) AS S1

, DEC(VARI ANCE(DEPT) , 4, 1) AS S2

, DEC(VARI ANCE(ALL DEPT), 4, 1) AS S3

, DEC({ VARI ANCE(DI STI NCT' DEPT), 4, 1) AS S4
FROM STAFF;

Figure 139, VARIANCE function examples

50 Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

OLAP Functions

Introduction

The OLAP (Online Analytical Processing) functions enable one sequence and rank query
rows. They are especialy useful in those environments, like some web servers, where the
calling program is unable to do much processing logic.

The Bad Old Days

To really appreciate the value of the OLAP functions, one should try to do some seemingly
trivial task without them. To illustrate this point, below is a simple little query:

SELECT S1.J0B, S1.1D, S1.SALARY ANSVEER
FROM STAFF S1 —==—=—=—=—===—========
VHERE S1. NAME LI KE ' %% JOB | D SALARY
AND S1.1D < 90
ORDER BY S1.J0B Clerk 80 13504. 60
, S1. 1 D; Myr 10 18357.50

Myr 50 20659. 80
Figure 140, Select rows from STAFF table

Let us now add two fields to this query:
¢ A running sum of the salaries selected.
* A running count of the rows retrieved.

Adding these fieldsis easy - when using OLAP functions:

SELECT S1.JOB, S1.1D, S1.SALARY
, SUM SALARY) OVER(ORDER BY JOB, |D) AS SUMBAL
, ROW NUMBER() OVER(ORDER BY JOB, ID) AS R

FROM STAFF S1 ANSVEER
VWHERE S1. NAME LI KE " %% ——==—=—====
AND S1.1D < 90 JOB | D SALARY SUMSAL R
ORDER BY S1.JOB eeeme e emmmmmme eeeeoa o -
, S1. 1 D Clerk 80 13504.60 13504.60 1

Myr 10 18357.50 31862.10 2
Myr 50 20659.80 52521.90 3

Figure 141, Using OLAP functionsto get additional fields

But imagine that we don't have OLAP functions, or we are too stupid to figure out how to use
them, or we are getting paid by the hour. We can still get the required answer, but the codeis
quite tricky. The problem is that this seemingly simple query contains two nasty tricks:

* Not al of therowsin the table are selected.
e Theoutput isordered on two fields, the first of which is not unique.

Below are severa examples that use plain SQL to get the above answer. All of the examples
have the same generic design (i.e. join each matching row to itself and all previous matching
rows) and share similar problems (i.e. difficult to read, and poor performance).

Nested Table Expression

Below isaquery that uses a nested table expression to get the additional fields. This SQL has
the following significant features:

» TheTABLE phraseis required because the nested table expression has a correlated refer-
ence to the prior table. See page 32 for more details on the use of this phrase.

OLAP Functions 51

Graeme Birchall ©

There are no join predicates between the nested table expression output and the original

STAFF table. They are unnecessary because these predicates are provided in the body of
the nested table expression. With them there, and the above TABLE function, the nested
table expression is resolved once per row obtained from the STAFF Sl table.

The original literal predicates have to be repeated in the nested table expression.
The correlated predicatesin the nested table expression have to match the ORDER BY

sequence (i.e. first JOB, then ID) in the final output.

Now for the query:
S1.J0B, S1.1D, Sl1.SALARY

SELECT
FROM

VWHERE
AND

STAFF S1

FROM
WHERE
AND

, TABLE
(SELECT

, XX. SUMBAL, XX. #ROVW6

» QOUNT(*)

S1. NAME LI KE

S1

.1D

ORDER BY S1.J0B

, S1

.1 D;

<

STAFF S2
S2. NAME LI KE
S2.1D
AND (S2.JO0B
OR (S2.J0B
AND S2.1D
) AS XX

<
<

<=

" U8 %
90

SUM S2. SALARY) AS SUMSAL

AS R

" U8 %

90

S1.JoB
S1.JoB
S1.1D))

Myr 10 18357.50 31862.10 2
Myr 50 20659. 80 52521.90 3

Figure 142, Using Nested Table Expression to get additional fields
Ignoring any readability issues, this query has some major performance problems:

¢ Thenested table expression is a partial Cartesian product. Each row fetched from "S1" is
joined to al prior rows (in "S2"), which quickly getsto be very expensive.

e Thejoin criteriamatch the ORDER BY fields. If the latter are suitably complicated, then
the join is going to be inherently inefficient.

Self-Join and Group By

In the next example, the STAFF table isjoined to itself such that each matching row obtained
fromthe"S1" table isjoined to al prior rows (plus the current row) in the "S2" table, where
"prior" isafunction of the ORDER BY clause used. After the join, a GROUP BY is needed

in order to roll up the matching "S2" rows up into one;

SELECT S1.JOB, Sl1.ID, Sl.SALARY
, SUM S2. SALARY) AS SUMBAL
, COUNT(*) AS R
FROM STAFF S1
, STAFF S2
WHERE SI1.NAMVE LI KE ’ %%
AND S1.1D < 90
AND S2.NAME LIKE ' 9%6%
AND S2.1D < 90
AND (S2.JOB < Sl1.JoB
R (S2.J0B = S1.JOB
AND S2.1D <= S1.1D))
GROUP BY S1.JOB
,S1.1D
, S1. SALARY
ORDER BY S1.JOB
,S1. 1D,

Myr 10 18357.50 31862.10 2
Myr 50 20659.80 52521.90 3

Figure 143, Using Self-Join and Group By to get additional fields

52

Column Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Nested Table Expressions in Select

In our final example, two nested table expression are used to get the answer. Both are donein

the SELECT part of the main query:

SELECT S1.J0B, S1.1D, S1.SALARY
, (SELECT SUM S2. SALARY)
FROM STAFF S2
WHERE S2. NAME LI KE ' %%
AND S2.1D < 90
AND (S2.J0B < S1.J0B
OR (S2. JOB = S1.J0B
AND S2. 1D <= S1.1D))) AS SUNMBAL
. (SELECT COUNT(*)
FROM STAFF S3
WHERE S3. NAME LI KE ' %%
AND S3.1D < 90
AND (S3. JOB < S1.JoB
OR (S3.J0B = S1.J0B
AND S3.1D <= S1.1D))) AS R
FROM STAFF S1
WHERE S1. NAME LI KE ' %% ANSVEER
AND S1.1D < 90 ————=—=———--—-——=—=—=——=—=—=—=—=—=—=—====
CRDER BY S1.J0B JOB | D SALARY SUMSAL R
B T D S e

Myr 10 18357.50 31862.10 2
Myr 50 20659.80 52521.90 3

Figure 144, Using Nested Table Expressions in Select to get additional fields

Once again, this query processes the matching rows multiple times, repeats predicates, has
join predicates that match the ORDER BY , and does apartial Cartesian product. The only
difference hereisthat this query commits al of the above sinstwice.

Conclusion

Almost anything that an OLAP function does can be done some other way using simple SQL.
But as the above examplesillustrate, the alternatives are neither pretty nor efficient. And re-
member that the initial query used above was actually very simple. Feel freeto try replacing
the OLAP functionsin the following query with their SQL equivalents:

SELECT DPT. DEPTNAMVE

, EMP. EMPNO
, EMP. LASTNAVE
, EMP. SALARY
, SUM SALARY) OVER(ORDER BY DPT. DEPTNAMVE ASC
, EMP. SALARY DESC
,EMP.EMPNO ASC) AS SUMBAL
, ROW NUMBER() OVER(ORDER BY DPT. DEPTNAMVE ASC
, EMP. SALARY DESC
,EMP.EMPNO ASC) AS ROW
FROM EMPLOYEE EMP
, DEPARTMENT DPT
WHERE ~ EMP. FI RSTNVE LI KE * %8%
AND EMP.WORKDEPT = DPT. DEPTNO
AND DPT. ADVRDEPT LI KE * A%
AND NOT EXI STS
(SELECT *
FROM EMP_ACT EAT
WHERE EMP.EMPNO = EAT. EMPNO
AND EAT. EMPTI ME > 10)
ORDER BY DPT. DEPTNAME ASC
, EMP. SALARY DESC
,EMP. EMPNO ASC,

Figure 145, Complicated query using OLAP functions

OLAP Functions 53

Graeme Birchall ©

OLAP Functions, Definitions

Ranking Functions

The RANK and DENSE_RANK functions enable one to rank the rows returned by a query.
Theresult is of type BIGINT.

>[RANK()
DENSE_RANK() j
L PARTITION BY ipartitioning expression JJ

OVER(}

asc option
}— ORDER BY gsort-key expression [P il) }

| desc option |

asc option

I ASC TNULLS LAST] }

| NULLS FIRST _|

desc option
NULLS FIRSTj

~
P pesc | NULLSLAST _| 4
Figure 146, Ranking Functions syntax

NOTE: The ORDER BY phrase, which is required, is used to both sequence the values,
and to tell DB2 when to generate a new value. See page 55 for details.

RANK vs. DENSE_RANK
The two functions differ in how they handle multiple rows with the same value:

« The RANK function returns the number of proceeding rows, plus one. If multiple rows
have equal values, they all get the same rank, while subsequent rows get a ranking that
counts all of the prior rows. Thus, there may be gaps in the ranking sequence.

« TheDENSE RANK function returns the number of proceeding distinct values, plus one.
If multiple rows have equal values, they all get the same rank. Each change in data value
causes the ranking number to be incremented by one.

The following query illustrates the use of the two functions:

54 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT I D
, YEARS
, SALARY

, RANK() OVER(ORDER BY YEARS) AS RANK#
, DENSE_RANK() OVER(ORDER BY YEARS) AS DENSE#
, ROW NUMBER() OVER(ORDER BY YEARS) AS ROWM

FROM STAFF
WHERE ID < 100

AND YEARS |'S NOT NULL

ORDER BY YEARS;

30
40
90
10
70
20
50

Figure 147, Ranking functions example

ORDER BY Usage

The ORDER BY phrase, which is mandatory, gives a sequence to the ranking, and also tells
DB2 when to start anew rank value. The following query illustrates both uses:

SELECT JOB
, YEARS
1D
, NAMVE
, SMALLI NT(RANK()
. SMALLI NT(RANK()

, SMALLI NT(RANK()

, SMALLI NT(RANK()

. SMALLI NT(RANK()
, SMALLI NT(RANK()
, SMALLI NT(RANK()
, SMALLI NT(RANK()
FROM STAFF
WHERE ID < 150
AND YEARS IN (6,7)
AND JOB >
ORDER BY JOB
YEARS
1D

OVER(ORDER
OVER(ORDER

OVER(ORDER
OVER(ORDER
OVER(ORDER
OVER(ORDER

OVER(ORDER

OVER(ORDER

BY JOB
BY JOB

, YEARS

BY JOB

, YEARS

BY JOB
BY JOB

, YEARS

BY JOB

, YEARS

BY JOB

, YEARS

BY JOB

, YEARS

, 1D

ASC))
ASC
ASC))
ASC
ASC
ASC))
DESC))
DESC
DESC))
DESC
DESC
DESC))
ASC
DESC
ASC))
DESC
ASC
DESC))

AS
AS

AS

AS

AS

AS

AS

AS

ASC1
ASC2

ASC3

DSC1

DSC2

DSC3

M X1

M X2

DSC1 DSC2 DSC3 M X1 M X2

Myr 6 140 Fraye 1
Myr 7 10 Sanders 1
Myr 7 100 Plotz 1
Sal es 6 40 OBrien 4
Sal es 6 90 Koonitz 4
Sal es 7 70 Rot hman 4

Figure 148, ORDER BY usage

OLAP Functions

ASC1 ASC2 ASC3

OO WNEF

PNWAOOIO

APrOCINPFPW

WFRENOIO D

55

Graeme Birchall ©

Observe above that adding more fields to the ORDER BY phrase resulted in more ranking

values being generated.
Ordering Nulls

When writing the ORDER BY, one can optionally specify whether or not null values should
be counted as high or low. The default, for an ascending field is that they are counted as high
(i.e. come last), and for a descending field, that they are counted as low:

SELECT ID
, YEARS
, SALARY

., DENSE_RANK() OVER(ORDER BY YEARS ASC)
, DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS FIRST) AS AF
. DENSE_RANK() OVER(ORDER BY YEARS ASC NULLS LAST) AS AL

, DENSE_RANK() OVER(ORDER BY YEARS DESC)

AS YR
AS A

AS D

, DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS FIRST) AS DF
, DENSE_RANK() OVER(ORDER BY YEARS DESC NULLS LAST) AS DL

FROM STAFF

VWHERE I D < 100

ORDER BY YEARS ANSVEER
I D YR SALARY
30 5 17506.75
90 6 18001.75
40 6 18006. 00
70 7 16502. 83
10 7 18357.50
20 8 18171.25
50 10 20659. 80
80 - 13504.60
60 - 16808.30

Figure 149, Overriding the default null ordering sequence

OOUTRWWNNE!
PROORARWWN!
OOURWWNNE!
PRPNWARMOIOIO !
PERNWARMOIOIO !
oOOoORNWWAMO!

In generd, in arelational database one null value does not equal another null value. But, asis
illustrated above, for purposes of assigning rank, al null values are considered equal.

NOTE: The ORDER BY used in the ranking functions (above) has nothing to do with the
ORDER BY at the end of the query. The latter defines the row output order, while the for-
mer tells each ranking function how to sequence the values. Likewise, one cannot define

the null sort sequence when ordering the rows.

Counting Nulls

The DENSE RANK and RANK functions include null values when cal culating rankings. By
contrast the COUNT DISTINCT statement excludes null values when counting values. Thus,
asisillustrated below, the two methods will differ (by one) when they are used get a count of

distinct values - if there are nulls in the target data:

SELECT COUNT(DI STINCT YEARS) AS Y#1
, MAX(Y#) AS Y#2
FROM (SELECT YEARS

, DENSE_RANK() OVER(ORDER BY YEARS) AS Y#

FROM STAFF
WHERE ID < 100
) AS XXX
ORDER BY' 1;

Figure 150, Counting distinct values - comparison

56

Y#1 Y#2

5 6

OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

PARTITION Usage

The PARTITION phrase |ets one rank the data by subsets of the rows returned. In the follow-
ing example, the rows are ranked by salary within year:

SELECT I D
, YEARS AS YR
, SALARY

, RANK() OVER(PARTI TI ON BY YEARS
BY SALARY) AS R1

ORDER
FROM STAFF
VWHERE I D < 80
AND YEARS | S NOT NULL
ORDER BY YEARS
, SALARY;

Figure 151, Values ranked by subset of rows

Multiple Rankings

One can do multiple independent rankings in the same query:

SELECT ID
, YEARS
, SALARY

, SVALLI NT(RANK() OVER(ORDER BY YEARS ASC)) g
. SVALLI NT(RANK() OVER(ORDER BY YEARS DESC)) AS RANK_D
, SVALLI NT(RANK() OVER(ORDER BY I D, YEARS))

FROM STAFF
VWHERE I D < 100

AND YEARS |'S NOT NULL
ORDER BY YEARS;

Figure 152, Multiple rankings in same query

Dumb Rankings

30
40
70
10
20
50

AS RANK_A

AS RANK_IY

If one wants to, one can do some really dumb rankings. All of the examples below are fairly
stupid, but arguably the dumbest of the lot isthe last. In this case, the "ORDER BY 1" phrase

ranks the rows returned by the constant "one", so every row gets the same rank. By contrast

the"ORDER BY 1" phrase at the bottom of the query sequences the rows, and so has valid

business meaning:

SELECT ID
, YEARS
, NAMVE
, SALARY

. SVALLI NT(RANK() OVER(ORDER BY SUBSTR(NAME, 3, 2)))
. SVALLI NT(RANK() OVER(ORDER BY SALARY / 1000))

, SMALLI NT(RANK() OVER(ORDER BY YEARS * |D))

. SVALLI NT(RANK() OVER({ ORDER BY RAND()))
. SVALLI NT(RANK() OVER(ORDER BY 1))

FROV STAFF
WHERE ID < 40

AND YEARS |'S NOT NULL
ORDER BY 1;

Figure 153, Dumb rankings, SQL

ID YEARS NAME SALARY

10 7 Sanders 18357. 50
20 8 Pernal 18171. 25
30 5 Marenghi 17506. 75

Figure 154, Dumb ranking, Answer

OLAP Functions

AS DUMB1
AS DUMB2
AS DUMB3
AS DuUwvB4
AS DUMB5

DuvB2 DUMB3 DUVB4 DUVB5S

57

Graeme Birchall ©

Subsequent Processing

The ranking function gets the rank of the value as of when the function was applied. Subse-
guent processing may mean that the rank no longer makes sense. To illustrate this point, the
following query ranks the same field twice. Between the two ranking calls, some rows were
removed from the answer set, which has caused the ranking results to differ:

SELECT XXX * ANSVER
, RANK() OVER(ORDER BY I D) AS R2 R ———
FROM (SELECT ID IDNAVE RL R2
JNAVE i
, RANK() OVER(ORDER BY ID) AS Rl 40 OBrien 4 1
FROM STAFF 50 Hanes 5 2
WHERE ID < 100 70 Rothman 6 3
AND YEARS |'S NOT NULL 90 Koonitz 7 4
) AS XXX
WHERE ' ID > 30
ORDER BY I D;

Figure 155, Subsequent processing of ranked data
Ordering Rows by Rank

One can order the rows based on the output of aranking function. This can let one sequence
the data in ways that might be quite difficult to do using ordinary SQL. For example, in the
following query the matching rows are ordered so that all those staff with the highest salary in
their respective department come first, followed by those with the second highest salary, and
so on. Within each ranking value, the person with the highest overall salary islisted first:

SELECT ID ANSVER
, RANK() OVER(PARTI TI ON BY DEPT B

ORDER BY SALARY DESC) AS Rl ID Rl SALARY DP

JSALARY T Ll i o

, DEPT AS DP 50 1 20659.80 15

FROM STAFF 10 1 18357.50 20
WHERE ID < 80 40 1 18006.00 38
AND YEARS |'S NOT NULL 20 2 18171.25 20
ORDER BY R1 ASC 30 2 17506.75 38
, SALARY DESC; 70 2 16502.83 15

Figure 156, Ordering rows by rank, using RANK function
Here is the same query, written without the ranking function:

SELECT 1D ANSVEER
, (SELECT CQJNT(*) ——————————————=—=—=
FROM STAFF S2 ID RL SALARY DP
WHERE S2.1D <80 e e eeeeae o
AND S2. YEARS IS NOT NULL 50 1 20659.80 15
AND S2. DEPT = S1. DEPT 10 1 18357.50 20
AND S2. SALARY >= S1. SALARY) AS R1 40 1 18006.00 38
, SALARY 20 2 18171.25 20
, DEPT AS DP 30 2 17506.75 38
FROM STAFF S1 70 2 16502.83 15
WHERE 1D < 80
AND YEARS |'S NOT NULL
CRDER BY R1 ASC
, SALARY DESC,

Figure 157, Ordering rows by rank, using sub-query
The above query has all of the failings that were discussed at the beginning of this chapter:

» Thenested table expression hasto repeat all of the predicatesin the main query, and have
predicates that define the ordering sequence. Thusit is hard to read.

e Thenested table expression will (inefficiently) join every matching row to all prior rows.

58 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Selecting the Highest Value

The ranking functions can also be used to retrieve the row with the highest value in a set of
rows. To do this, one must first generate the ranking in a nested table expression, and then
query the derived field later in the query. The following statement illustrates this concept by
getting the person, or persons, in each department with the highest salary:

SELECT I D ANSVEER
‘SALARY ————————————==
, DEPT AS DP | D SALARY DP
FROM (SELECT SL.* A -
, RANK() OVER(PARTI TI ON BY DEPT 50 20659.80 15
ORDER BY SALARY DESC) AS R1 10 18357.50 20
FROM STAFF S1 40 18006. 00 38
WHERE I D < 80
AND YEARS |I'S NOT NULL
) AS XXX
WHERE RL =1
ORDER BY DP;

Figure 158, Get highest salary in each department, use RANK function
Here is the same query, written using a correlated sub-query:

SELECT ID ANSVER
, DEPT AS DP ID SALARY DP
FROM STAFF S1 e e --
WHERE ID < 80 50 20659. 80 15
AND YEARS |'S NOT NULL 10 18357.50 20
AND NOT EXISTS 40 18006. 00 38
(SELECT *
FROM STAFF S2
WHERE S2.1D < 80
AND S2. YEARS |'S NOT NULL
AND S2. DEPT = S1. DEPT
AND S2.SALARY > SI.SALARY)
ORDER BY DP;

Figure 159, Get highest salary in each department, use correlated sub-query

Here is the same query, written using an uncorrelated sub-query:

SELECT I D ANSVEER
‘SALARY ————————————==
, DEPT AS DP | D SALARY DP
FROM STAFF LR --
VWHERE 1D < 80 50 20659. 80 15
AND YEARS | S NOT NULL 10 18357.50 20
AND (DEPT, SALARY) IN 40 18006. 00 38

(SELECT DEPT, MAX(SALARY)
FROM STAFF
WHERE ID < 80
AND YEARS IS NOT NULL
GROUP BY DEPT)
ORDER BY DP;

Figure 160, Get’ highest salary in each department, use uncorrelated sub-query

Arguably, the first query above (i.e. the one using the RANK function) is the most elegant of
the series because it is the only statement where the basic predicates that define what rows
match are written once. With the two sub-query examples, these predicates have to bere-
peated, which can often lead to errors.

NOTE: If it seems at times that this chapter was written with a poison pen, it is because
just about now | had a "Microsoft moment" and my machine crashed. Needless to say, |
had backups and, needless to say, they got trashed. It took me four days to get back to
where | was. Thanks Bill - may you rot in hell. / Graeme

OLAP Functions 59

Graeme Birchall ©

Row Numbering Function

The ROW_NUMBER function lets one number the rows being returned. The result is of type
BIGINT. A syntax diagram follows. Observe that unlike with the ranking functions, the OR-
DER BY isnot required:

F ROW_NUMBER() — OVER(}

> , 8 >
L— PARTITION BY ipartitioning expression
4 ,) 4

asc option
L ORDER BY gordering expression [P _]
| desc option

Figure 161, Numbering Function syntax
ORDER BY Usage

Y ou don't have to provide an ORDER BY when using the ROW_NUMBER function, but not
doing so can be considered to be either brave or foolish, depending on one’s outlook on life.
To illustrate this issue, consider the following query:

SELECT 1D ANSVEER
, NAMVE ——————————————=—==
' ROW NUVBER() OVER() AS RL | D NANE RL R2
' ROWNUVBER() OVER(ORDER BY ID) AS R2 <= -comcece -2 -
FROM STAFF 10 Sanders 1 1
WHERE 1D < 50 20 Pernal 2 2
AND YEARS |'S NOT NULL 30 Marenghi 3 3
CRDER BY | D, 40 O Brien 4 4

Figure 162, ORDER BY example, 1 of 3

In the above example, both ROW_NUMBER functions return the same set of values, which
happen to correspond to the sequence in which the rows are returned. In the next query, the
second ROW_NUMBER function purposely uses another sequence:

SELECT 1D ANSVEER
, NAMVE ——————————————=—==
" ROV NUMBER() OVER() AS R1 | D NAMVE RL R2
' ROWNUVBER() OVER(ORDER BY NAME) AS R2 == =comceee —o --
FROM STAFF 10 Sanders 4 4
VWHERE I D < 50 20 Pernal 3 3
AND YEARS |'S NOT NULL 30 Marenghi 2 2
ORDER BY I D 40 O Brien 1 1

Figure 163, ORDER BY example, 2 of 3

Observe that changing the second function has had an impact on the first. Now lets see what
happens when we add another ROW_NUMBER function:

SELECT ID ANSVEER
,’\IA,\/E s —
, ROW NUMBER() OVER() AS RL 1D NAME RL R2 R3

. ROWNUVBER() OVER(ORDER BY ID) AS R2 == -c-ecmme oo —n --

, ROW NUVBER() OVER(ORDER BY NAME) AS R3 10 Sanders 1 1 4

FROM STAFF 20 Pernal 2 2 3

VWHERE 1D < 50 30 Marenghi 3 3 1

AND YEARS |'S NOT NULL 40 O Brien 4 4 2
CORDER BY | D,

Figure 164, ORDER BY example, 3 of 3

Observe that now the first function has reverted back to the origina sequence.

60 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The lesson to be learnt hereis that the ROW_NUMBER function, when not given an explicit
ORDER BY, may create avalue in any odd sequence. Usually, the sequence will reflect the
order in which the rows are returned - but not always.

PARTITION Usage

The PARTITION phrase |ets one number the matching rows by subsets of the rows returned.
In the following example, the rows are both ranked and numbered within each JOB:

SELECT JOB
, YEARS
, 1D
, NAVE
" ROV NUMBER() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS ROW
, RANK() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS RN1#
, DENSE_RANK() OVER(PARTI TI ON BY JOB
ORDER BY YEARS) AS RN2#
FROM STAFF
WHERE 1D < 150
AND YEARS IN (6,7) ANSVEER
AND JOB > L e
CRDER BY JOB JOB YEARS I D NAME ROM RN1# RN2#
, YEARS;, meee memem e eeieien aeem e e oo
Myr 6 140 Fraye 1 1 1
Myr 7 10 Sanders 2 2 2
Myr 7 100 Plotz 3 2 2
Sal es 6 40 O Brien 1 1 1
Sal es 6 90 Koonitz 2 1 1
Sal es 7 70 Rot hman 3 3 2

Figure 165, Use of PARTITION phrase

One problem with the above query is that the final ORDER BY that sequences the rows does
not identify aunique field (e.g. ID). Consequently, the rows can be returned in any sequence
within agiven JOB and Y EAR. Because the ORDER BY in the ROW_NUMBER function
also fails to identify a unique row, this means that there is no guarantee that a particular row
will aways give the same row number.

For consistent results, ensure that both the ORDER BY phrase in the function call, and at the
end of the query, identify aunique row. And to always get the rows returned in the desired
row-number sequence, these phrases must be equal.

Selecting "n" Rows
To query the output of the ROW_NUMBER function, one has to make a nested temporary

table that contains the function expression. In the following example, this technique is used to
limit the query to the first three matching rows:

SELECT * ANSVEER
NA

, VE | D NAVE R
, ROW NUMBER() OVER(ORDER BY ID) ASR -- -------- -
FROM STAFF 10 Sanders 1
VHERE I D < 100 20 Pernal 2
AND YEARS |I'S NOT NULL 30 Marenghi 3
) AS XXX
VHERE R <=3
ORDER BY | D;

Figure 166, Select first 3 rows, using ROW_NUMBER function
In the next query, the FETCH FIRST "n" ROWS notation is used to achieve the same result:

OLAP Functions 61

Graeme Birchall ©

SELECT ID ANSVEER
, NAVE —============
. RON NUMBER() OVER(CRDER BY 1D) AS R | D NANE R
FROM STAFF e e -
VHERE I D < 100 10 Sanders 1
AND YEARS | S NOT NULL 20 Per nal 2
ORDER BY I D 30 Marenghi 3

FETCH FI RST 3 ROAS ONLY;
Figure 167, Select first 3 rows, using FETCH FIRST notation

So far, the ROW_NUMBER and the FIRST FETCH notations seem to be about the same. But
the former technique is much more flexible. To illustrate, in the next query we retrieve the 3rd
through 6th matching rows:

SELECT * ANSVEER
FROM (SELECT I D —==—==========
, NAME I D NAME R
. RON NUMBER() OVER(CRDER BY 1D) AS R -- --n--n-- -
FROM STAFF 30 Marenghi 3
VWHERE I D < 200 40 OBrien 4
AND YEARS |'S NOT NULL 50 Hanes 5
) AS XXX 70 Rothman 6
VHERE R BETWEEN 3 AND 6
ORDER BY | D

Figure 168, Select 3rd through 6th rows

In the next query we get every 5th matching row - starting with the first:

SELECT * ANSVEER

, NAME ID NAME R
, ROV NUMBER() OVER(ORDER BY ID) AS R --- =----c- --
FROM STAFF 10 Sanders 1
VHERE I D < 200 70 Rothman 6
AND YEARS |'S NOT NULL 140 Fraye 11
) AS XXX 190 Snei der 16
VWHERE (R-1 =((R-1) /5 *5
ORDER BY I D

Figure 169, Select every 5th matching row

In the next query we get the last two matching rows:

SELECT *
FROM (SELECT I D
, NAMVE
, ROW NUMBER() OVER(ORDER BY I D DESC) AS R
FROM STAFF

WHERE I D < 200
AND YEARS |'S NOT NULL ANSVEER
VWHERE R<=2 I D NAME R
CRDER BY ID, e e

190 Sneider 1
Figure 170, Select last two rows

Selecting "n" or more Rows

Imagine that one wants to fetch the first "n" rowsin aquery. Thisis easy to do, and has been
illustrated above. But imagine that one also wants to keep on fetching if the following rows
have the same value as the "nth".

In the next example, we will get the first three matching rowsin the STAFF table, ordered by
years of service. However, if the 4th row, or any of the following rows, has the same YEAR
as the 3rd row, then we also want to fetch them.

62 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The query logic goes as follows:

» Select every matching row in the STAFF table, and give them all both a row-number and
aranking value. Both values are assigned according to the order of the final output. Put
the result into atemporary table - TEMPL.

* Query the TEMP1 table, getting the ranking of whatever row we want to stop fetching at.
Inthis caseg, it isthe 3rd row. Put the result into atemporary table - TEMP2.

* Findly, join to the two temporary tables. Fetch those rowsin TEMP1 that have aranking
that islessthan or equal to the single row in TEMP2.

W TH
TEMP1(YEARS, |ID, NAME, RNK, ROWN AS
(SELECT YEARS
, 1D
, NAMVE
, RANK() OVER(ORDER BY YEARS)
, ROW NUMBER() OVER(ORDER BY YEARS, |D)
FROM STAFF
WHERE ID < 200
AND YEARS | S NOT NULL

).
TEMP2(RNK) AS

(SELECT RNK
FROM TEMP1
VHERE ROW = 3 ANSVER
) s ————————————————
SELECT TEMPL. * YEARS | D NAME RNK ROW
FROM TEMPL mmeem eem emmiaon oo -
, TEMP2 3 180 Abrahans 1 1
VWHERE TEMP1. RNK <= TEMP2. RNK 4 170 Kerm sch 2 2
ORDER BY YEARS 5 30 Marenghi 3 3
, 1 D 5 110 Ngan 3 4

Figure 171, Select first "n" rows, or more if needed

Thetype of query illustrated above can be extremely useful in certain business situations. To
illustrate, imagine that one wants to give areward to the three employees that have worked
for the company the longest. Stopping the query that lists the lucky winners after three rows
are fetched can get oneinto alot of troubleif it happens that there are more than three em-
ployees that have worked for the company for the same number of years.

Selecting "n" Rows - Efficiently

Sometimes, one only wants to fetch the first "n" rows, where "n" is small, but the number of
matching rows is extremely large. In this section, we will discus how to obtain these "n" rows
efficiently, which means that we will try to fetch just them without having to process any of
the many other matching rows.

Below is a sample invoice table. Observe that we have defined the INV# field as the primary
key, which means that DB2 will build a unique index on this column:

CREATE TABLE | NvO CE

(1 NV# I NTEGER NOT NULL
, CUSTOVER# I NTEGER NOT NULL
, SALE_DATE DATE NOT NULL

SALE_VALUE DECI MAL(9,2) NOT NULL
, CONSTRAI NT CTX1 PRI MARY KEY (1 NV#)
, CONSTRAI NT CTX2 CHECK(| NV# >= 0));

Figure 172, Performance test table - definition

The next SQL statement will insert 100,000 rows into the above table. After the rows were
inserted, RUNSTATS was run, so the optimizer could choose the best access path.

OLAP Functions 63

Graeme Birchall ©

I NSERT | NTO | N\VOI CE
WTH TEMP (N, M AS
(VALUES (I NTEGER(0), RAND(1))

UNI ON ALL

SELECT N+1, RAND()

FROM TEMP

WHERE N+1 < 100000

)

SELECT N AS | NV#
,INT(M * 1000) AS CUSTOVER#
. DATE(’ 2000-11-01’) + (M40) DAYS AS SALE DATE
,DECI MAL((M * M * 100), 8, 2) AS SALE VALUE

FROM TEMP;

Figure 173, Performance test table - insert 100,000 rows

Imagine we want to retrieve the first five rows (only) from the above table. Below are severa
queriesthat will get this result. For each query, for the elapsed time, as measured by the DB2
Event Monitor is provided.

Below we use the "FETCH FIRST n ROWS' notation to stop the query at the 5th row. This
query first did a tablespace scan, then sorted all 100,000 matching rows, and then fetched the
first five. It was not cheap:

SELECT S.*
, ROW NUMBER() OVER() AS ROW
FROM INVOI CE S

CORDER BY | Nv#
FETCH FI RST 5 ROAS ONLY;

Figure 174, Fetch first 5 rows - 2.837 elapsed seconds

The next query is essentially the same as the prior, but this time we told DB2 to optimize the
query for fetching five rows. Now one would think that the optimizer would already know
this, but it evidently did not. This query used the INV# index to retrieve the rows without
sorting. It stopped processing at the 5th row. Observe that it was almost a thousand times
faster than the prior example:

SELECT S.*
, ROW NUMBER() OVER() AS ROW
FROM INVOI CE S

ORDER BY | Nv#
FETCH FI RST 5 ROAS ONLY
OPTIM ZE FOR 5 ROWG;

Figure 175, Fetch first 5 rows - 0.003 elapsed seconds

The next query uses the ROW_NUMBER function to sequence the rows. Subsequently, only
those rows with a row-number less than or equal to five are retrieved. DB2 answers this query
using a single non-matching index scan of the whole table. No temporary table is used, and
nor isasort done, but the query is not exactly cheap

SELECT *

FROM (SELECT S.*

, ROW NUMBER() OVER() AS ROM
FROM I NVO CE S
) XXX
WHERE ROME <= 5
ORDER BY | NV#;

Figure 176, Fetch first 5 rows - 0.691 elapsed seconds

At about this point, almost any halfway-competent idiot would conclude that the best way to
make the above query run faster is to add the same "OPTIMIZE FOR 5 ROWS" notation that
did wondersin the prior example. So we did (see below), but the access path remained the
same, and the query now ran significantly slower:

64 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT *
FROM (SELECT S *
, ROWNUMBER() OVER() AS ROM
FROM INVOI CE S
) XXX
WHERE ROW <= 5
ORDER BY | NV#
OPTIM ZE FOR 5 ROVS;

Figure 177, Fetch first 5 rows - 2.363 elapsed seconds

One can also use recursion to get the first "n" rows. One begins by getting the first matching
row, and then one uses that row to get the next, and then the next, and so on (in arecursive
join), until the required number of rows has been obtained.

In the following example, we start by getting the row with the MIN invoice-number. This row
isthen joined to the row with the next to lowest invoice-number, which is then joined to the
next, and so on. After five such joins, the cycle is stopped and the result is sel ected:
WTH TEMP (I Nv#, C#, SD, SV, N) AS
(SELECT INV.*
.1
FROM I NVO CE | NV
WHERE | Nv# =
(SELECT M N(| Nv#)
FROM | NVO CE)
UNTON ALL
SELECT NEW*, N + 1
FROM TEMP oD
, | N\VOI CE NEW
WHERE OLD. I NV# < NEW | Nv#
AND OLD.N <5
AND NEW I NV# =
(SELECT M N(XXX. | NV#)
FROM | NVO CE XXX
WHERE XXX. | NV# > OLD. | Nv#)

)
SELECT *
FROM TEMP;

Figure 178, Fetch first 5 rows - 0.005 elapsed seconds

The above techniqueis nice to know, but it will have few practical uses, because it has sev-
eral major disadvantages:

e Itisnot exactly easy to understand.

* Itrequiresall primary predicates (e.g. get only those rows where the sale-value is greater
than $10,000, and the sale-date greater than last month) to be repeated four times. In the
above example there are none, which is unusual in the real world.

« It quickly becomes both very complicated and quite inefficient when the sequencing
value is made up of multiple fields. In the above example, we sequenced by the INV#
column, but imagine if we had used the sale-date, sale-value, and customer-number.

* Itisextremely vulnerable to inefficient access paths. For example, if instead of joining
from one (indexed) invoice-number to the next, we joined from one (non-indexed) cus-
tomer-number to the next, the query would run forever.

In conclusion, in this section we have illustrated how minor changesto the SQL syntax can
cause major changesin query performance. But to illustrate this phenomenon, we used a set
of queries with 100,000 matching rows. In situations where there are far fewer matching
rows, one can reasonably assume that this problem is not an issue.

OLAP Functions 65

Graeme Birchall ©

Aggregation Function

The various aggregation functions let one do cute things like get cumulative totals or running
averages. In some ways, they can be considered to be extensions of the existing DB2 column
functions. The output type is dependent upon the input type.

—— column-function OVER()
4 —T <

OVER(}

L PARTITION BY ipartitioning expression JJ

‘ asc option
F ORDER BY gordering expression []) 4

L desc option — }

7)4

}—[ROWS UNBOUNDED PRECEDING
RANGE unsigned-constant PRECEDING __|
CURRENT ROW

BETWEEN UNBOUNDED PRECEDING 74}
unsigned-constant PRECEDING —
unsigned-constant FOLLOWING __|
CURRENT ROW

F AND UNBOUNDED FOLLOWING) 4
unsigned-constant PRECEDING

unsigned-constant FOLLOWING __|
CURRENT ROW
Figure 179, Aggregation Function syntax

Syntax Notes
Guess what - thisis a complicated function. Be aware of the following:
e Any DB2 column function (e.g. AVG, SUM, COUNT) can use the aggregation function.

» The OVER() usage aggregates all of the matching rows. Thisis equivalent to getting the
current row, and also applying a column function (e.g. MAX, SUM) against al of the
matching rows (see page 67).

» ThePARTITION phrase limits any aggregation to a subset of the matching rows.

¢ TheORDER BY phrase has two purposes; It defines a set of values to do aggregations
on. Each distinct value gets a new result. It also defines a direction for the aggregation
function processing - either ascending or descending (see page 68).

« AnORDER BY phraseisrequired if the aggregation is confined to a set of rows or range
of values. In addition, if aRANGE is used, then the ORDER BY expression must be a
single value that allows subtraction.

« If an ORDER BY phraseis provided, but neither a RANGE nor ROWS is specified, then
the aggregation is done from the first row to the current row.

66 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

¢ The ROWS phrase limits the aggregation result to a set of rows - defined relative to the
current row being processed. The applicable rows can either be already processed (i.e.
preceding) or not yet processed (i.e. following), or both (see page 69).

¢ The RANGE phrase limits the aggregation result to arange of values - defined relative to
the value of the current row being processed. The range is calculated by taking the value
in the current row (defined by the ORDER BY phrase) and adding to and/or subtracting
from it, then seeing what other rows are in the range. For this reason, when RANGE is
used, only one expression can be specified in the aggregation function ORDER BY, and
the expression must be numeric (see page 72).

* Preceding rows have already been fetched. Thus, the phrase "ROWS 3 PRECEDING"
refers to the 3 preceding rows - plus the current row. The phrase "UNBOUNDED PRE-
CEDING" refersto al those rows (in the partition) that have already been fetched, plus
the current one.

« Following rows have yet to be fetched. The phrase "UNBOUNDED FOLLOWING" re-
fersto all those rows (in the partition) that have yet to be fetched, plus the current one.

e Thephrase CURRENT ROW refers to the current row. It is equivalent to getting zero
preceding and following rows.

o If either aROWS or aRANGE phraseis used, but no BETWEEN is provided, then one
must provide a starting point for the aggregation (e.g. ROWS 1 PRECEDING). The start-
ing point must either precede or equal the current row - it cannot follow it. The implied
end point is the current row.

* When using the BETWEEN phrase, put the "low" value in the first check and the "high"
value in the second check. Thus one can go from the 1 PRECEDING to the CURRENT
ROW, or from the CURRENT ROW to 1 FOLLOWING, but not the other way round.

e Theset of rowsthat match the BETWEEN phrase differ depending upon whether the
aggregation function ORDER BY is ascending or descending.

Basic Usage

Initssimplest form, with just an "OVER()" phrase, an aggregation function works on all of
the matching rows, running the column function specified. Thus, one gets both the detailed
data, plus the SUM, or AV G, or whatever, of all the matching rows.

In the following example, five rows are selected from the STAFF table. Along with various
detailed fields, the query also gets sum summary data about the matching rows:

SELECT ID
, NAVE
, SALARY
, SUM SALARY) OVER() AS SUM SAL
, AVG{ SALARY) OVER() AS AVG SAL
., M N(SALARY) OVER() AS M N_SAL
, MAX(SALARY) OVER() AS MAX_SAL
, COUNT(*) OVER() AS #ROWS

FROM STAFF
VWHERE ID < 60
ORDER BY I D;

Figure 180, Aggregation function, basic usage, SQL

Below isthe answer

OLAP Functions 67

Graeme Birchall ©

ID NAME SALARY SUM SAL AVG_SAL M N_SAL MAX_SAL #ROWS
10 Sanders 18357.50 92701.30 18540.26 17506.75 20659.80 5
20 Pernal 18171.25 92701.30 18540.26 17506.75 20659.80 5
30 Marenghi 17506.75 92701.30 18540.26 17506.75 20659.80 5
40 OBrien 18006. 00 92701.30 18540.26 17506.75 20659.80 5
50 Hanes 20659.80 92701.30 18540.26 17506.75 20659.80 5

Figure 181, Aggregation function, basic usage, Answer

It is possible to do exactly the same thing using old-fashioned SQL, but it is not so pretty:

W TH
TEMP1 (I D, NAME, SALARY) AS
(SELECT I D, NAME, SALARY
FROM STAFF
WHERE ID < 60

),
TEMP2 (SUM SAL, AVG SAL, M N _SAL, MAX SAL, #ROWS) AS
(SELECT ~ SUM SALARY)

, AVG(SALARY)
. M N(SALARY)
, MAX(SALARY)
, COUNT(*)
FROM TEMPL

)

SELECT *

FROM TEMPL

, TEMP2
ORDER BY I D;

Figure 182, Select detailed data, plus summary data

An aggregation function with just an "OVER()" phrase islogically equivalent to one that has
an ORDER BY on afield that has the same value for all matching rows. To illustrate, in the
following query, the four aggregation functions are all logically equivalent:

SELECT ID
, NAMVE
. SALARY
, SUM SALARY) OVER() AS SUML
, SUM SALARY) OVER(ORDER BY ID * 0) AS SUMR
, SUM SALARY) OVER(ORDER BY ’ ABC) AS SUMB

, SUM SALARY) OVER(ORDER BY ' ABC
RANGE BETWEEN UNBOUNDED PRECEDI NG
AND UNBOUNDED FOLLOW NG) AS SUMH

FROM STAFF
VHERE ID < 60
ORDER BY | D;
Figure 183, Logically equivalent aggregation functions, SQL
ID NAME SALARY SuUML suwe SUMB SUMA

10 Sanders 18357.50 92701.30 92701.30 92701.30 92701.30
20 Pernal 18171.25 92701.30 92701.30 92701.30 92701.30
30 Marenghi 17506.75 92701.30 92701.30 92701.30 92701.30
40 O Brien 18006. 00 92701.30 92701.30 92701.30 92701.30
50 Hanes 20659.80 92701.30 92701.30 92701.30 92701.30

Figure 184, Logically equivalent aggregation functions, Answer
ORDER BY Usage
The ORDER BY phrase has two main purposes.

« It providesaset of valuesto do aggregations on. Each distinct value gets a new result.

« It givesadirection to the aggregation function processing (i.e. ASC or DESC).

68 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

In the next query, various aggregations are done on the DEPT field, which is not unique, and
on the DEPT and NAME fields combined, which are unique (for these rows). Both ascending
and descending aggregations are illustrated:

SELECT DEPT
, NAME
, SALARY
, SUM SALARY)
, SUM SALARY)
, SUM SALARY)
, SUM SALARY)
, COUNT(*)
, COUNT(*)
FROM STAFF
WHERE ID < 60
ORDER BY DEPT
» NAME;

OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY
OVER(ORDER BY

DEPT)
DEPT DESC)
DEPT, NAME)

DEPT DESC, NAME DESC)

DEPT)
DEPT, NAVE)

Figure 185, Aggregation function, order by usage, SQL

AS SUML
AS Suwe
AS SUMB

AS Suwa

AS ROM
AS RON2

The answer is below. Observe that the ascending fields sum or count up, while the descending
fields sum down. Also observe that each aggregation field gets a separate result for each new
set of rows, as defined in the ORDER BY phrase:

DEPT NAME
15
20
20
38
38

SALARY

20659. 80
18171. 25
18357. 50
17506. 75
18006. 00

Per nal

Sander s
Mar enghi
O Brien

20659. 80
57188. 55
57188. 55
92701. 30
92701. 30

9270
7204
7204
3551
3551

1.
1.
1.
2.
2.

20659. 80
38831. 05
57188. 55
74695. 30
92701. 30

Figure 186, Aggregation function, order by usage, Answer

ROWS Usage

92701. 30
72041. 50
53870. 25
35512. 75
18006. 00

The ROWS phrase can be used to limit the aggregation function to a subset of the matching

rows or distinct values. If no ROWS or RANGE phrase is provided, the aggregation is done
for al preceding rows, up to the current row. Likewise, if no BETWEEN phraseis provided,
the aggregation is done from the start-location given, up to the current row. In the following
query, all of the examples using the ROWS phrase are of this type:

SELECT DEPT
, NAMVE
, YEARS
, SMALLI NT(SUM
. SMALLI NT(SUM
, SVMALLI NT(SUM

, SMALLI NT(SUM
, SMALLI NT(SUM
, SMALLI NT(SUM
, SMALLI NT(SUM
, SMALLI NT(SUM

FROV STAFF

VWHERE I D <

AND YEARS | S NOT
ORDER BY DEPT
» NAVE;

YEARS)
YEARS)
YEARS)

OVER(ORDER
OVER(ORDER
OVER(ORDER

ROWS

YEARS)
YEARS)
YEARS)
YEARS)
YEARS)

100
NULL

OVER(ORDER
RO\B
OVER(ORDER
ROAB
OVER(ORDER
ROAB
OVER(ORDER
ROAB
OVER(ORDER
ROAB

BY DEPT)) AS
BY DEPT, NAME)) AS
BY DEPT, NAME

UNBOUNDED PRECEDI NG)) AS
BY DEPT, NAME

3 PRECEDI NG)) AS
BY DEPT, NAME

1 PRECEDI NG)) AS
BY DEPT, NAME

0 PRECEDI NG)) AS
BY DEPT, NAME

CURRENT ROW) AS
BY DEPT DESC, NAME DESC

1 PRECEDI NG)) AS

Figure 187, Sarting ROWSusage. Implied end is current row, SQL

OLAP Functions

69

Graeme Birchall ©

Below isthe answer. Observe that an aggregation starting at the current row, or including
zero proceeding rows, doesn't aggregate anything other than the current row:

DEPT NAMVE YEARS D DN DNU DN3 DN1 DNO DNC DNX
15 Hanes 10 17 10 10 10 10 10 10 17
15 Rot hman 7 17 17 17 17 17 7 7 15
20 Per nal 8 32 25 25 25 15 8 8 15
20 Sander s 7 32 32 32 32 15 7 7 12
38 Mar enghi 5 43 37 37 27 12 5 5 11
38 O Brien 6 43 43 43 26 11 6 6 12
42 Kooni t z 6 49 49 49 24 12 6 6 6

Figure 188, Sarting ROWSusage. Implied end is current row, Answer
BETWEEN Usage

In the next query, the BETWEEN phrase is used to explicitly define the start and end rows
that are used in the aggregation:

SELECT DEPT
, NAVE
. YEARS
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME)) AS UCL
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROV UNBOUNDED PRECEDI NG)) AS UC2
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN UNBOUNDED PRECEDI NG
AND CURRENT ROW) AS UC3
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN CURRENT ROW
AND CURRENT ROW) AS CUL
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN 1 PRECEDI NG
AND 1 FOLLOW NG)) AS PF1
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NANE
ROWS BETWEEN 2 PRECEDI NG
AND 2 FOLLOW NG)) AS PF2
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN 3 PRECEDI NG
AND 3 FOLLOW NG)) AS PF3
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NANE
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOW NG)) AS CUL
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT, NAME
ROWS BETWEEN UNBOUNDED PRECEDI NG
AND UNBOUNDED FOLLOW NG)) AS UUL
FROM STAFF
WHERE ID < 100
AND YEARS |'S NOT NULL
ORDER BY DEPT
, NAVE;

Figure 189, ROWS usage, with BETWEEN phrase, QL
Now for the answer. Observe that the first three aggregation calls are logically equivalent:

DEPT NAME YEARS UC1 UC2 UC3 Cul PF1 PF2 PF3 CUl UUL
15 Hanes 10 10 10 10 10 17 25 32 49 49
15 Rot hnman 7 17 17 17 7 25 32 37 39 49
20 Pernal 8 25 25 25 8 22 37 43 32 49
20 Sanders 7 32 32 32 7 20 33 49 24 49
38 Marenghi 5 37 37 37 5 18 32 39 17 49
38 O Brien 6 43 43 43 6 17 24 32 12 49
42 Koonitz 6 49 49 49 6 12 17 24 6 49

Figure 190, ROWS usage, with BETWEEN phrase, Answer

70 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

The BETWEEN predicate in an ordinary SQL statement is used to get those rows that have a
value between the specified low-value (given first) and the high value (given last). Thus the
predicate "BETWEEN 5 AND 10" may find rows, but the predicate "BETWEEN 10 AND 5"
will never find any.

The BETWEEN phrase in an aggregation function has asimilar usagein that it defines the set
of rows to be aggregated. But it differsin that the answer depends upon the function ORDER
BY seguence, and a non-match returns a null value, not no-rows.

Below is some sample SQL. Observe that the first two aggregations are ascending, while the
last two are descending:

SELECT 1D
, NAVE
, SVALLI NT(SUM | D) OVER(ORDER BY | D ASC
ROWS BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS APC
, SMALLI NT(SUM | D) OVER(ORDER BY | D ASC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOWNG)) AS ACF
, SVALLI NT(SUM | D) OVER(ORDER BY | D DESC
ROWS BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS DPC
, SMALLI NT(SUM | D) OVER(ORDER BY | D DESC
ROWS BETWEEN CURRENT ROW
AND 1 FOLLOWNG)) AS DCF

FROV STAFF
WHERE ID < 50
AND YEARS |'S NOT NULL ANSVER

10 Sanders 10 30 30 10
20 Pernal 30 50 50 30
30 Marenghi 50 70 70 50
40 O Brien 70 40 40 70

Figure 191, BETWEEN and ORDER BY usage

The following table illustrates the processing sequence in the above query. Each BETWEEN
is applied from left to right, while the rows are read either from Ieft to right (ORDER BY 1D
ASC) or right to left (ORDER BY ID DESC):

ASC 1 D (10, 20, 30, 40)
READ ROAS, LEFT to Rl GHT 1ST-RON 2ND-RON 3RD-RON 4TH ROW

1 PRECEDI NG t o CURRENT ROW 10=10 10+20=30 20+30=40 30+40=70
CURRENT ROWNWto 1 FOLLONNG 10+20=30 20+30=50 30+40=70 40 =40

DESC 1 D (40, 30, 20, 10)
READ ROWS, RI GHT to LEFT 1ST-RONW 2ND-RONW 3RD-RON 4TH ROW

1 PRECEDI NG to CURRENT ROW 20+10=30 30+20=50 40+30=70 40 =40
CURRENT RONto 1 FOLLONNG 10 =10 20+10=30 30+20=50 40+30=70

NOTE: Preceding row is always on LEFT of current row.
Following row is always on RI GHT of current row.

Figure 192, Explanation of query

IMPORTANT: The BETWEEN predicate, when used in an ordinary SQL statement, is not
affected by the sequence of the input rows. But the BETWEEN phrase, when used in an
aggregation function, is affected by the input sequence.

OLAP Functions 71

Graeme Birchall ©

RANGE Usage

The RANGE phrase limits the aggregation result to arange of numeric values - defined rela-
tive to the value of the current row being processed. The range is obtained by taking the value
in the current row (defined by the ORDER BY expression) and adding to and/or subtracting
from it, then seeing what other rows are in the range. Note that only one expression can be
specified in the ORDER BY/, and that expression must be numeric.

In the following example, the RANGE function adds to and/or subtracts from the DEPT field.
For example, in the function that is used to populate the RG10 field, the current DEPT value
is checked against the preceding DEPT values. If their value is within 10 digits of the current
value, therelated YEARS field is added to the SUM:

SELECT DEPT

, NAVE
, YEARS
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RONS BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS ROM
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RONS BETVEEN 2 PRECEDI NG
AND CURRENT ROW) AS RO
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RANGE BETWEEN 1 PRECEDI NG
AND CURRENT ROW) AS R&1
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RANGE BETWEEN 10 PRECEDI NG
AND CURRENT ROW) AS RGLO
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RANGE BETWEEN 20 PRECEDI NG
AND CURRENT ROW) AS RG0
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RANGE BETWEEN 10 PRECEDI NG
AND 20 FOLLOWNG)) AS RGL1
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
RANGE BETWEEN CURRENT ROW
AND 20 FOLLONNG) AS R&9
FROM STAFF
VHERE ID < 100
AND YEARS |'S NOT NULL
ORDER BY DEPT
» NAVE;
Figure 193, RANGE usage, SQL
Now for the answer:
DEPT NAVE YEARS ROM ROM®2 R&@1 RGO R&R0 RGL1 R®9
15 Hanes 10 10 10 17 17 17 32 32
15 Rot hman 7 17 17 17 17 17 32 32
20 Pernal 8 15 25 15 32 32 43 26
20 Sanders 7 15 22 15 32 32 43 26
38 Marengh 5 12 20 11 11 26 17 17
38 OBrien 6 11 18 11 11 26 17 17
42 Koonitz 6 12 17 6 17 17 17 6

Figure 194, RANGE usage, Answer

Note the difference between the ROWS as RANGE expressions:

» The ROWS expression refersto the "n" rows before and/or after (within the partition), as
defined by the ORDER BY .

* The RANGE expression refers to those before and/or after rows (within the partition) that
are within an arithmetic range of the current row.

72 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

PARTITION Usage

One can take al of the lovely stuff described above, and make it whole lot more complicated
by using the PARTITION expression. This phrase limits the current processing of the aggre-
gation to a subset of the matching rows.

In the following query, some of the aggregation functions are broken up by partition range
and some are not. When there is a partition, then the ROWS check only works within the
range of the partition (i.e. for agiven DEPT):

SELECT DEPT

, NAVE
, YEARS
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT)) AS X
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
ROWS 3 PRECEDI NG)) AS XCB
, SMALLI NT(SUM YEARS) OVER(ORDER BY DEPT
ROAS BETWEEN 1 PRECEDI NG
AND 1 FOLLOWNG)) AS XOl1
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT)) AS P
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT)) AS PO
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROAS 1 PRECEDI NG)) AS POL
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROWS 3 PRECEDI NG)) AS PCB
, SMALLI NT(SUM YEARS) OVER(PARTI TI ON BY DEPT
ORDER BY DEPT
ROAS BETWEEN 1 PRECEDI NG
AND 1 FOLLOWNG)) AS POL1
FROM STAFF
WHERE | D BETWEEN 40 AND 120

AND YEARS |'S NOT NULL
ORDER BY DEPT

» NAVE;
Figure 195, PARTITION usage, SQL
DEPT NAME YEARS X X8 X011 P PO POL PO POL1
15 Hanes 10 22 10 15 22 22 10 10 15
15 Ngan 5 22 15 22 22 22 15 15 22
15 Rot hman 7 22 22 18 22 22 12 22 12
38 OBrien 6 28 28 19 6 6 6 6 6
42 Koonitz 6 41 24 19 13 13 6 6 13
42 Plotz 7 41 26 13 13 13 13 13 13

Figure 196, PARTITION usage, Answer
PARTITION vs. GROUP BY

The PARTITION clause, when used by itself, returns avery similar result to a GROUP BY,
except that it does not remove the duplicate rows. To illustrate, below isasimple query that
doesaGROUPBY::

SELECT DEPT ANSVEER
, SUM YEARS) AS SUM —=——=——=—=—=—=—=—=—==—===
, AV YEARS) AS AVG DEPT SUM AVG ROW
'COUNT(*) = AS ROW
FROM STAFF 15 22 7 3
VWHERE | D BETWEEN 40 AND 120 38 6 6 1
AND YEARS |'S NOT NULL 42 13 6 2

GROUP BY DEPT;
Figure 197, Sample query using GROUP BY

OLAP Functions 73

Graeme Birchall ©

Below isasimilar query that uses the PARTITION phrase. Observe that the answer is the
same, except that duplicate rows have not been removed:

SELECT DEPT ANSVER
, SUM YEARS) OVER(PARTI TI ON BY DEPT) AS SUM =================
, AVG({ YEARS) OVER(PARTI TI ON BY DEPT) AS AVG DEPT SUM AVG ROW
, COUNT(*) ~ OVER(PARTI TI ON BY DEPT) AS RON ----- === --- ---

FROM STAFF 15 22 7 3
VWHERE | D BETWEEN 40 AND 120 15 22 7 3
AND YEARS IS NOT NULL 15 22 7 3
ORDER BY DEPT; 38 6 6 1
42 13 6 2

42 13 6 2

Figure 198, Sample query using PARTITION

Below is another similar query that uses the PARTITION phrase, and then uses a DISTINCT
clause to remove the duplicate rows:

SELECT DI STI NCT DEPT ANSVER
, SUM YEARS) OVER(PARTI TI ON BY DEPT) AS SUM =================
, AVG({ YEARS) OVER(PARTI TI ON BY DEPT) AS AVG DEPT SUM AVG ROW
, COUNT(*) ~ OVER(PARTI TI ON BY DEPT) AS RON ----- === --- ---

FROM STAFF 15 22 7 3
VWHERE | D BETWEEN 40 AND 120 38 6 6 1
AND YEARS IS NOT NULL 42 13 6 2

ORDER BY DEPT;
Figure 199, Sample query using PARTITION and DISTINCT

Even though the above statement gives the same answer as the prior GROUP BY example, it
is not the sameinternally. Nor isit (probably) as efficient, and it certainly is not as easy to
understand. Therefore, when in doubt, use the GROUP BY syntax.

74 OLAP Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Scalar Functions

Introduction

Scalar functions act on asingle row at atime. In this section we shall list all of the ones that
come with DB2 and look in detail at some of the more interesting ones. Refer to the SQL
Reference for information on those functions not fully described here.

WARNING: Some of the scalar functions changed their internal logic between V5 and V6
of DB2. There have been no changes between V6 and V7, or between V7 and V8, except
for the addition of a few more functions.

Sample Data

The following self-defined view will be used throughout this section to illustrate how some of
the following functions work. Observe that the view has aVALUES expression that defines
the contents- three rows and nine columns.

CREATE VI EW SCALAR (D1, F1, S1, C1, V1, TS1, DT1, TML, TC1) AS
WTH TEMPL (N1, Cl, T1) AS
(VALUES (-2.4,’ ABCDEF ,’ 1996- 04-22-23.58. 58. 123456)
, (+0.0,” ABCD ’,’'1996-08-15-15.15.15.151515")
,(+1.8,’ AB '’ 0001- 01- 01- 00. 00. 00. 000000’))
SELECT DECI MAL(N1, 3, 1)
, DOUBLE(N1)
, SMALLI NT(N1)
, CHAR(C1, 6)
, VARCHAR(RTRI M C1) , 6)
, TI MESTAMP(T1)
, DATE(T1)
, TI ME(T1)
, CHAR(T1)
FROM TEMPL;
Figure 200, Sample View DDL - Scalar functions

Below are the view contents:

D1 F1 S1 Cl1 V1 TS1
-2.4 -2.4e+000 -2 ABCDEF ABCDEF 1996-04-22-23. 58. 58. 123456
0.0 0. 0e+000 0 ABCD ABCD 1996- 08- 15-15. 15. 15. 151515
1.8 1. 8e+000 1 AB AB 0001-01-01-00. 00. 00. 000000
DTl T™L TC1

04/ 22/ 1996 23:58: 58 1996- 04- 22- 23. 58. 58. 123456
08/ 15/ 1996 15:15:15 1996- 08- 15-15. 15. 15. 151515
01/01/0001 00:00:00 0001-01-01-00.00.00.000000

Figure 201, SCALAR view, contents (3 rows)

Scalar Functions, Definitions

ABS or ABSVAL

Returns the absolute value of a number (e.g. -0.4 returns + 0.4). The output field type will
equal the input field type (i.e. double input returns double output).

Scalar Functions 75

Graeme Birchall ©

SELECT D1 AS D1 ANSWER (fl oat out put shortened)
F1 AS F1 D1 D2 F1 F2

' ABS(F1) AS F2

FROM SCALAR; -2.400e+0 2.400e+00

2.4 2.4
0.0 0.0 0. 000e+0 0.000e+00
1.8 1.8 1.800e+0 1.800e+00

Figure 202, ABS function examples

ACOS

Returns the arccosine of the argument as an angle expressed in radians. The output format is
double.

ASCII

Returns the ASCII code value of the leftmost input character. Valid input types are any valid
character type up to 1 MEG. The output typeis integer.

SELECT C1 ANSVER

. ASCI | (SUBSTR(CL, 2)) AS AC2 c1 ACl AC2
FROM SCALAR
WHERE C1 = ' ABCDEF ; ABCDEF 65 66

Figure 203, ASCII function examples
The CHR function is the inverse of the ASCII function.

ASIN

Returns the arcsine of the argument as an angle expressed in radians. The output format is
double.

ATAN

Returns the arctangent of the argument as an angle expressed in radians. The output format is
double.

ATANH

Returns the hyperbolic acrctangent of the argument, where the argument is and an angle ex-
pressed in radians. The output format is double.

ATAN2

Returns the arctangent of x and y coordinates, specified by the first and second arguments, as
an angle, expressed in radians. The output format is double.

BIGINT

Converts the input value to bigint (big integer) format. The input can be either numeric or
character. If character, it must be a valid representation of a number.

76 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH TEMP (BIG AS
(VALUES BI G NT(1)
UNI ON ALL
SELECT BIG * 256

FROM

TEMP

VWHERE BI G < 1E16

)
SELECT BI G

FROM

TEMP

Figure 204, BIGINT function example

Converting certain float values to both bigint and decimal will result in different values being

returned (see below). Both results are arguably correct, it is simply that the two functions use

different rounding methods:
W TH TEMP (F1) AS
(VALUES FLOAT(1.23456789)

UNI ON ALL
SELECT F1 * 100

FROM

TEMP

VWHERE F1 < 1E18

)
SELECT F1

FROM

AS FLOAT1

, DEC(F1, 19) AS DECI MAL1
,BI G NT(F1) AS Bl G NT1

TEMP

167

42949
10995116
2814749767
720575940379

Figure 205, Convert FLOAT to DECIMAL and BIGINT, SQL

. 23456789000000E+000
. 23456789000000E+002
. 23456789000000E+004
. 23456789000000E+006
. 23456789000000E+008
. 23456789000000E+010
. 23456789000000E+012
. 23456789000000E+014
. 23456789000000E+016
. 23456789000000E+018

123.

12345.

1234567.

123456789.

12345678900.
1234567890000
123456789000000
12345678900000000
1234567890000000000

12345

1234567

123456788
12345678899
1234567889999
123456788999999
12345678899999996
1234567889999999488

Figure 206, Convert FLOAT to DECIMAL and BIGINT, answer
See page 266 for a discussion on floating-point number manipulation.

BLOB
Convertsthe input (1st argument) to a blob. The output length (2nd argument) is optional.

F BLOB (— string-expression

65536
77216
67296
27776
10656
27936

L

, length

]

Figure 207, BLOB function syntax

CEIL or CEILING

Returns the next smallest integer value that is greater than or equal to theinput (e.g. 5.045
returns 6.000). The output field type will equal the input field type.

F CEIL or CEILING (—— numeric-expression ——)

)

4

Figure 208, CEILING function syntax

Scalar Functions

4

77

Graeme Birchall ©

SELECT D1 ANSWER (fl oat output shortened)
F1

| CEIL(F1) AS F2

FROM SCALAR; - 2. -2.400E+0 - 2. 000E+0

2.4
0.0 0. +0. 000E+0 +0. 000E+0
1.8 2. +1. 800E+0 +2. 000E+0

Figure 209, CEIL function examples

NOTE: Usually, when DB2 converts a number from one format to another, any extra digits
on the right are truncated, not rounded. For example, the output of INTEGER(123.9) is
123. Use the CEIL or ROUND functions to avoid truncation.

CHAR

The CHAR function has a multiplicity of uses. The result is always a fixed-length character
value, but what happens to the input along the way depends upon the input type:

» For character input, the CHAR function acts a bit like the SUBSTR function, except that
it can only truncate starting from the left-most character. The optional length parameter,
if provided, must be a constant or keyword.

« Datetimeinput is converted into an equivalent character string. Optionaly, the external
format can be explicitly specified (i.e. 1ISO, USA, EUR, JIS, or LOCAL).

« Integer and double input is converted into a left-justified character string.

« Decimal input is converted into aright-justified character string with leading zeros. The
format of the decimal point can optionally be provided. The default decimal pointisa
dot. The'+' and -’ symbols are not allowed as they are used as sign indicators.

F CHAR (——— character value)
L , length J }
L , format J

I date-time value

— integer value

I double value

L decimal val

ecimal value L , dec.pt J
Figure 210, CHAR function syntax
Below are some examples of the CHAR function in action:

SELECT NAME ANSVEER
, CHAR(NAME, 3) e e bttt
, COW NAME 2 COow 4 5
CCHAR(COWM) mmmmee e el iDL
, CHAR(COW ’ @) Janes Jam 128.20 00128.20 00128@0
FROM STAFF Koonitz Koo 1386.70 01386.70 01386@0
VHERE I D BETVWEEN 80 Pl otz Pl o - - -
AND 100
ORDER BY | D

Figure 211, CHAR function examples - characters and numbers

The CHAR function treats decimal numbers quite differently from integer and real numbers.
In particular, it right-justifies the former (with leading zeros), while it left-justifies the latter
(with trailing blanks). The next example illustrates this point:

78 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

ANSVER
INT CHAR I NT CHAR FLT CHAR DEC
WTH TEMPL (N) AS 33 3. 0EO 00000000003.
(VALUES (3) 9 9 9. 0EO 00000000009.
UNION ALL 81 81 8. 1F1 00000000081.
SELECT N * N 6561 6561 6. 561E3 00000006561.
FROM TEMP1L 43046721 43046721 4.3046721E7 00043046721.
WHERE N < 9000
)
SELECT N AS | NT

, CHAR(I NT(N)) AS CHAR | NT
, CHAR(FLOAT(N)) AS CHAR FLT
, CHAR(DEC(N)) AS CHAR DEC
FROM TEMPL;
Figure 212, CHAR function examples - positive numbers

Negative numeric input is given aleading minus sign. This messes up the alignment of digits
in the column (relative to any positive values). In the following query, aleading blank is put
in front of all positive numbersin order to realign everything:

WTH TEMPL (N1, N2) AS ANSVEER
(VALUES (SMALLI NT(+3) —=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—==—==—============
, SMALLI NT(- 7)) NL 1L 12 DL D2
1 Y N
SELECT N1 * N2 33 +3 00003. +00003.
, N2 -21 -21 -21 -00021. -00021.
FROM TEMP1 147 147 +147 00147. +00147.
VWHERE N1 < 300 -1029 -1029 -1029 -01029. -01029.
) 7203 7203 +7203 07203. +07203.
SELECT N1
, CHAR(NL) AS 11
, CASE

WHEN N1 < 0 THEN CHAR (N1)
ELSE '+ CONCAT CHAR(NL)

END AS |2

, CHAR(DEC(N1)) AS D1

, CASE
WHEN N1 < 0 THEN CHAR(DEC(N1))
ELSE '+ CONCAT CHAR(DEC(NL))

END AS D2

FROM TEMPL;

Figure 213, Align CHAR function output - numbers

Both the 12 and D2 fields above will have atrailing blank on al negative values - that was
added during the concatenation operation. The RTRIM function can be used to removeit.

SELECT CHAR(HI REDATE, | SO) ANSVEER
, CHAR(HI REDATE, USA) ————=-----—----——————--=—=—=—=—=—=—====
, CHAR(HI REDATE, EUR) 1 2 3
FROM EMPLOYEE el el il
WHERE LASTNAME < 'C 1972-02-12 02/12/1972 12.02. 1972
CRDER BY 2; 1966- 03-03 03/ 03/ 1966 03.03. 1966

Figure 214, CHAR function examples - dates

WARNING: Observe that the above data is in day, month, and year (2nd column) order.
Had the ORDER BY been on the 1st column (with the ISO output format), the row se-
guencing would have been different.

CHAR vs. DIGITS - A Comparison

Numeric input can be converted to character using either the DIGITS or the CHAR function,
though the former does not support float. Both functions work differently, and neither gives

Scalar Functions 79

Graeme Birchall ©

perfect output. The CHAR function doesn't properly align up positive and negative numbers,
while the DIGITS function looses both the decimal point and sign indicator:

SELECT D2 ANSVER
y O_|AR(D2) AS ODZ e
, DG TS(D2) AS DD2 D2 CcD2 DD2
FROM (SELECT DEC(D1,4,1) AS D2 emme mmemee e
FROM SCALAR -2.4 -002.4 0024
) AS XXX 0.0 000.0 0000
ORDER BY 1; 1.8 001.8 0018

Figure 215, DIGITSvs. CHAR

CHR

Convertsinteger input in the range 0 through 255 to the equivalent ASCII character value. An
input value above 255 returns 255. The ASCII function (see above) isthe inverse of the CHR
function.

SELECT ' A AS "C' ANSVER
, ASCI | (’ A) AS "C>N' ———————————————=—=
,CHR(ASCII (" A)) AS "CN>C C CN OCONC NL
| CHR(333) AS "NL" oo I o
FROM STAFF A 65 A y

WHERE | D = 10;
Figure 216, CHR function examples

NOTE: At present, the CHR function has a bug that results in it not returning a null value
when the input value is greater than 255.

CLOB

Convertsthe input (1st argument) to a clob. The output length (2nd argument) is optional. If
the input is truncated during conversion, awarning message is issued. For example, in the
following example the second clob statement will induce awarning for the first two lines of
input because they have non-blank data after the third byte:

SELECT C1 ANSVER
, CLOB(C1, 3) AS CC2 Cl cC1 cc2

FROM SCALAR, e e .-

Figure 217, CLOB function examples

NOTE: At present, the DB2BATCH command processor dies a nasty death whenever it
encounters a clob field in the output.

COALESCE

Returnsthe first non-null value in alist of input expressions (reading from left to right). Each
expression is separated from the prior by acomma. All input expressions must be compatible.
VALUE isasynonym for COALESCE.

SELECT I D ANSVEER
, COW ——=—=—==—=—===========
, COALESCE(COWM 0) ID COW 3
FROM STAFF e e
VWHERE ID < 30 10 - 0. 00
ORDER BY | D 20 612.45 612.45

Figure 218, COALESCE function example

80 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

A CASE expression can be written to do exactly the same thing as the COALESCE function.
The following SQL statement shows two logically equivalent ways to replace nulls:

W TH TEMPL(CL1, C2, C3) AS ANSVER
(VALUES (CAST(NULL AS SMALLI NT) s=m———==
, CAST(NULL AS SMALLI NT) cCcl o2
,CAST(10 AS SMALLINT)))
SELECT COALESCE(C1, C2, C3) AS CCl 10 10
, CASE

VWHEN C1 IS NOT NULL THEN C1
VHEN C2 IS NOT NULL THEN C2
VWHEN C3 IS NOT NULL THEN C3
END AS CC2
FROM TEMP1;

Figure 219, COALESCE and equivalent CASE expression

Be aware that afield can return anull value, even when it is defined as not null. This occurs if
acolumn function is applied against the field, and no row is returned:

SELECT COUNT(*) AS #RONS ANSVER
, M N(1 D) AS MN_ID —==================
' COALESCE(M N(1 D), -1) AS CCC_I D #RONS M N_I D CCC_| D
FROM ' STAFF o o LoD LT T
WHERE |ID < §5; 0 - -1

Figure 220, NOT NULL field returning null value

CONCAT

Joins two strings together. The CONCAT function has both "infix" and "prefix" notations. In
the former case, the verb is placed between the two strings to be acted upon. In the latter case,
the two strings come after the verb. Both syntax flavours are illustrated below:
SELECT A || 'B ANSVER
, A’ CONCAT 'PB ————=———————————=—=—=—=
, CONCAT(’ A" ," B') 1 2 3 4 5
A 'B | 'C
, CONCAT(CONCAT(" A" ,’B'),'C) AB AB AB ABC ABC
FROM STAFF
WHERE ID = 10;

Figure 221, CONCAT function examples

Note that the "||" keyword can not be used with the prefix notation. This meansthat "||('a,’b’)"
isnot valid while "CONCAT('a, b)" is.

Using CONCAT with ORDER BY

When ordinary character fields are concatenated, any blanks at the end of thefirst field are
left in place. By contrast, concatenating varchar fields removes any (implied) trailing blanks.

If the result of the second type of concatenation is then used in an ORDER BY, the resulting
row sequence will probably be not what the user intended. To illustrate:

WTH TEMP1 (COL1, COL2) AS ANSVEER
(VALUES (! A’) ! YYY’) s p—p————
(TAE, T 000) COL1 COL2 CAL3

(OAE, YY) e e ae e

) AE 000 AEOCO

SELECT CO.1 AE YYY AEYYY
, COL2 A YYY AYYY
,COL1 CONCAT COL2 AS COL3

FROM TEMPL

CORDER BY COL3;
Figure 222, CONCAT used with ORDER BY - wrong output sequence

Converting the fields being concatenated to character gets around this problem:

Scalar Functions 81

Graeme Birchall ©

W TH TEMPL (COL1, COL2) AS ANSVER
(VALUES (! A’) ! YYY’) b ——————
(" AE, '000) COL1 COoL2 COL3
CCAED YY) D
) A YYY A YYY
SELECT COL1 AE 000 AEQQO
, COL2 AE YYY AEYYY

, CHAR(COL1, 2) CONCAT
CHAR(COL2, 3) AS COL3
FROM TEWP1
ORDER BY COL3;

Figure 223, CONCAT used with ORDER BY - correct output sequence

WARNING: Never do an ORDER BY on a concatenated set of variable length fields. The
resulting row sequence is probably not what the user intended (see above).

COSs

Returns the cosine of the argument where the argument is an angle expressed in radians. The
output format is double.

W TH TEMP1(N1) AS ANSVEER

(VALUES (O) ——=—=—=—=—=—=—=—=—==—=—==—=—=—======

UNI ON ALL N1 RAN cos SIN
SELECT N1 + 10 B B
FROM TEMP1 0 0.000 1.000 0.000
VWHERE N1 < 90) 10 0.174 0.984 0.173
SELECT N1 20 0.349 0.939 0.342
, DEC({ RADI ANS(NL) |, 4, 3) AS RAN 30 0.523 0.866 O0.500
' DEC{ COS(RADI ANS(N1)), 4, 3) AS COS 40 0.698 0.766 O.642
' DEC(SI N(RADI ANS(N1)) . 4. 3) AS SIN 50 0.872 0.642 0.766
FROM TEMPL; 60 1.047 0.500 O0.866
70 1.221 0.342 0.939
80 1.396 0.173 0.984
90 1.570 0.000 1.000

Figure 224, RADIAN, COS, and SIN functions example

COSH

Returns the hyperbolic cosine for the argument, where the argument is an angle expressed in
radians. The output format is double.

COoT

Returns the cotangent of the argument where the argument is an angle expressed in radians.
The output format is double.

DATE

Converts the input into a date value. The nature of the conversion process depends upon the
input type and length:

e Timestamp and date input have the date part extracted.

e Char or varchar input that isavalid string representation of a date or atimestamp (e.g.
"1997-12-23") is converted asis.

e Char or varchar input that is seven byteslong is assumed to be a Julian date value in the
format yyyynnn where yyyy isthe year and nnn is the number of days since the start of
the year (in the range 001 to 366).

82 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

¢ Numeric input is assumed to have a value which represents the number of days since the
date "0001-01-01" inclusive. All numeric types are supported, but the fractional part of a
valueisignored (e.g. 12.55 becomes 12 which converts to "0001-01-12").

F DATE (—— expression ——) }

Figure 225, DATE function syntax

If the input can be null, the output will aso support null. Null values convert to null output.

SELECT TS1 ANSVEER
, DATE(TSl) AS DT1 ——————=——=—=-————=-———-————=——————=—=—=—=—=—=—======
FROM SCALAR, TS1 DT1

1996- 04- 22- 23. 58. 58. 123456 04/ 22/ 1996
1996- 08- 15- 15. 15. 15. 151515 08/ 15/ 1996
0001- 01-01- 00. 00. 00. 000000 01/01/0001

Figure 226, DATE function example - timestamp input

W TH TEMPL(NL) AS ANSVEER
(VALUES (000001) Mt —
, (728000) N1 DL
,(730120)) il e
SELECT N1 1 01/01/ 0001
, DATE(NL) AS D1 728000 03/ 13/ 1994
FROM TEMPL; 730120 01/ 01/ 2000

Figure 227, DATE function example - numeric input

DAY

Returns the day (asin day of the month) part of a date (or equivalent) value. The output for-
mat is integer.

SELECT DT1 ANSVEER
FROM SCALAR DT1 DAY1

WHERE DAY(DT1) > 10: ...
04/22/1996 22
08/15/1996 15

Figure 228, DAY function examples

If the input is adate or timestamp, the day value must be between 1 and 31. If theinput isa
date or timestamp duration, the day value can ran from -99 to +99, though only -31 to +31
actually make any sense:

SELECT DTl ANSVEER
, DAY(DT1) AS DAY1 —=—=—=—==—=—=—=================
, DT1 -’ 1996- 04- 30’ AS DUR2 Dr1 DAY1 DUR2 DAY2
'DAY(DTL -’ 1996-04-30") AS DAY2 =-c-mcmmen mmmn oo oo
FROM SCALAR 04/22/1996 22 -8. -8
VWHERE DAY(DT1) > 10 08/ 15/ 1996 15 315. 15
CRDER BY DT1;

Figure 229, DAY function, using date-duration input

NOTE: A date-duration is what one gets when one subtracts one date from another. The
field is of type decimal(8), but the value is not really a number. It has digits in the format:
YYYYMMDD, so in the above query the value "315" represents 3 months, 15 days.

DAYNAME

Returns the name of the day (e.g. Friday) as contained in a date (or equivalent) value. The
output format is varchar(100).

Scalar Functions 83

SELECT DT1
, DAYNAVE(DT1) AS DY1
. LENGTH(DAYNAVE(DT1)) AS DY2
FROM SCALAR

VWHERE DAYNAME(DT1) LIKE ' %%’
ORDER BY DT1,;

Figure 230, DAYNAME function example

DAYOFWEEK

01/01/0001
04/ 22/ 1996
08/ 15/ 1996

Graeme Birchall ©

DY1 Dy2
Monday 6
Monday 6
Thur sday 8

Returns a number that represents the day of the week (where Sunday is 1 and Saturday is 7)
from a date (or equivalent) value. The output format is integer.

SELECT DT1
, DAYOFVEEEK(DT1) AS DWK
, DAYNAME(DT1) ~ AS DNM
FROM SCALAR
ORDER BY DVK
, DNM

Figure 231, DAYOFWEEK function example

DAYOFWEEK_ISO

01/ 01/ 0001
04/ 22/ 1996
08/ 15/ 1996

2
2 Monday
5 Thur sday

Returns an integer value that represents the day of the "ISO" week. An 1SO week differsfrom
an ordinary week in that it begins on aMonday (i.e. day-number = 1) and it neither ends nor
begins at the exact end of the year. Instead, the final 1SO week of the prior year will continue
into the new year. This often means that the first days of the year have an 1SO week number
of 52, and that one gets more than seven daysin a year for 1SO week 52.

W TH
TEMPL (N) AS

(VALUES (0)

UNI ON ALL

SELECT N+1

FROM TEMPL

WHERE N < 9),
TEMP2 (DT1) AS

(VALUES(DATE(’ 1999- 12- 25’))

, (DATE(’ 2000- 12- 24’))),

TEMP3 (DT2) AS

(SELECT DT1 + N DAYS

FROM TEMPL

, TEMP2)

SELECT CHAR(DT2, | SO) AS DATE
, SUBSTR(DAYNAMVE(DT2) , 1, 3) AS DAY
, WEEK(DT2) AS W
, DAYOFVEEK(DT2) AS D
, WVEEK_| SO(DT2) AS W
, DAYORVEEK | SO(DT2) AS |

FROM TEMP3

ORDER BY 1;

Figure 232, DAYOFWEEK_| SO function example

DAYOFYEAR

1999-12- 25
1999-12- 26
1999- 12- 27
1999-12-28
1999-12- 29
1999-12-30
1999-12-31
2000-01-01
2000-01-02
2000-01-03
2000-12- 24
2000-12- 25
2000- 12- 26
2000- 12- 27
2000- 12- 28
2000-12- 29
2000-12-30
2000-12-31
2001-01-01
2001-01-02

DAY WD W |
Sat 52 7 51 6
Sun 53 1 51 7
Mon 53 2 52 1
Tue 53 3 52 2
Wed 53 4 52 3
Thu 53 5 52 4
Fri 53 6 52 5
Sat 1 7 52 6
Sun 2 1527
Mn 22 11
Sun 53 1 51 7
Mon 53 2 52 1
Tue 53 3 52 2
Wed 53 4 52 3
Thu 53 5 52 4
Fri 53 6 52 5
Sat 53 7 52 6
Sun 54 1 52 7
Mn 12 11
Tue 13 12

Returns a number that is the day of the year (from 1 to 366) from a date (or equivalent) value.

The output format is integer.

84

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT DTl ANSVEER
, DAYO:YEAR(DT]_) AS DYR —=—==—==—=—=—=—======
FROM SCALAR DT1 DYR

ORDER BY DYR, e .-
01/01/ 0001 1
04/22/1996 113
08/15/1996 228

Figure 233, DAYOFYEAR function example
DAYS

Converts adate (or equivalent) value into a number that represents the number of days since
the date "0001-01-01" inclusive. The output format is INTEGER.

SELECT DT1 ANSVEER

FROM SCALAR DT1 Dyl

CRDER BY DYy2 e e eeaaee
, DT1, 01/ 01/ 0001 1

04/ 22/ 1996 728771
08/ 15/ 1996 728886

Figure 234, DAYSfunction example

The DATE function can act as the inverse of the DAY S function. It can convert the DAY S
output back into avalid date.

DBCLOB
Convertsthe input (1st argument) to a dbclob. The output length (2nd argument) is optional.

DEC or DECIMAL

Converts either character or numeric input to decimal. When the input is of type character, the
decimal point format can be specified.

>—[DECIMAL (— number)
DEC L , precision ‘ }
L , scale J
(—char)
L , precision ‘
- seale 1 ——]
dec

Figure 235, DECIMAL function syntax

W TH TEMPL(NL, N2, C1, C2) AS ANSVER
L 1E2 DECI DEC2 DEC3 DECA
123,40 ool ol o T
.’ 567$8")) 123. 100.0 123.4 567.8
SELECT DEC(NL, 3) AS DECL
, DEC(N2, 4, 1) AS DEC2
. DEC(CL, 4, 1) AS DEC3
,DEC(C2,4,1,’$') AS DEC4
FROM TEMPL;

Figure 236, DECIMAL function examples

WARNING: Converting a floating-point number to decimal may get different results from
converting the same number to integer. See page 266 for a discussion of this issue.

Scalar Functions 85

Graeme Birchall ©

DEGREES

Returns the number of degrees converted from the argument as expressed in radians. The out-
put format is double.

DEREF
Returns an instance of the target type of the argument.

DECRYPT_BIN and DECRYPT_CHAR

Decrypts data that has been encrypted using the ENCRY PT function. Use the BIN function to
decrypt binary data (e.g. BLOBS, CLOBS) and the CHAR function to do character data. Nu-
meric data cannot be encrypted.

}_[DECRYPT_BIN __ encrypted data) }
DECRYPT CHAR T . .password |
Figure 237, DECRYPT function syntax

If the password is null or not supplied, the value of the encryption password special register
will be used. If it isincorrect, a SQL error will be generated.

SELECT ID
, NAVE
, DECRYPT_CHAR(NAME2, ' CLUELESS') AS NAME3
, GETHI NT(NAVE2) AS HI NT
, NAVE2

FROM (SELECT 1D

, NAVE
, ENCRYPT(NAME, * CLUELESS ,’ MY BOSS') AS NAME2
FROM STAFF
WHERE I D < 30
) AS XXX
ORDER BY' | D;

Figure 238, DECRYPT_CHAR function example

DIFFERENCE

Returns the difference between the sounds of two strings as determined using the SOUNDEX
function. The output (of type integer) ranges from 4 (good match) to zero (poor match).

SELECT A. NAMVE AS N1 ANSVER
, S(lJNDEX(A NANE) AS S1 ——======
, B. NAVE AS N2 N1 S1 N2 S2 DF
, SOUNDEX(B. NAME) AS S2 ccmmmom mmin aeeiei oo o
, DI FFERENCE Sanders S536 Snei der S536 4
(A NAME, B. NAME) AS DF Sanders S536 Snith S530 3
FROM STAFF A Sanders S536 Lundqui st L532 2
, STAFF B Sanders S536 Daniels D542 1
VWHERE A ID =10 Sanders S536 Molinare M56 1
AND B.ID > 150 Sanders S536 Scoutten S350 1
AND B.1D < 250 Sanders S536 Abrahams A165 0
ORDER BY DF DESC Sanders S536 Kermisch K652 0
, N2 ASC; Sanders S536 Lu LOOO O

Figure 239, DIFFERENCE function example

NOTE: The difference function returns one of five possible values. In many situations, it
would imprudent to use a value with such low granularity to rank values.

86 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

DIGITS

Converts an integer or decimal value into a character string with leading zeros. Both the sign
indicator and the decimal point are lost in the trandlation.

SELECT S1 ANSVEER
D1

, s1 DSI D1 DD1
,DIGTS(DL) AS DDL emmeeemeeee e

FROM SCALAR -2 00002 -2.4 024
0 00000 0.0 000

1 00001 1.8 018

Figure 240, DIGITS function examples

The CHAR function can sometimes be used as alternative to the DIGITS function. Their out-
put differs slightly - see above for a comparison.

DLCOMMENT

Returns the comments value, if it exists, from a datalink value.

DLLINKTYPE
Returns the linktype value from a datalink value.

DLURLCOMPLETE
Returns the URL value from a datalink value with alinktype of URL.

DLURLPATH

Returns the path and file name necessary to access afile within a given server from a datalink
value with linktype of URL.

DLURLPATHONLY

Returns the path and file name necessary to access afile within a given server from a datalink
value with alinktype of URL. The value returned never includes a file access token.

DLURLSCHEME
Returns the scheme from a datalink value with alinktype of URL.

DLURLSERVER
Returns the file server from a datalink value with alinktype of URL.

DLVALUE
Returns adatalink value.

DOUBLE or DOUBLE_PRECISION

Converts numeric or valid character input to type double. This function is actually two with
the same name. The one that converts numeric input isa SY SIBM function, while the other
that handles character input isa SY SFUN function. The keyword DOUBLE_PRECISION has
not been defined for the latter.

Scalar Functions 87

Graeme Birchall ©

W TH TEMP1(Cl, D1) AS ANSWER (out put short ened)
(VALUES (' 12345’ ,12.4) ——=—=—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—==========
,('-28.5",1234) CiD D1D
P 1EHA5-234) il .
,('-2e05,+2.4)) +1. 23450000E+004 +1. 24000000E+001
SELECT DOUBLE(C1) AS C1D - 2. 35000000E+001 +1. 23400000E+003
, DOUBLE(D1) AS D1D +1. 00000000E+045 -2. 34000000E+002
FROM TEMPL, - 2. 00000000E+005 +2.40000000E+000

Figure 241, DOUBLE function examples
See page 266 for a discussion on floating-point number manipulation.

ENCRYPT

Returns a encrypted rendition of the input string. The input must be char or varchar. The out-
put is varchar for bit data.

FENCRYPT — (—— encrypted data
P L,password]) }
L hint |

Figure 242, DECRYPT function syntax
The input values are defined as follows:

e ENCRYPTED DATA: A char or varchar string 32633 bytes that is to be encrypted. Nu-
meric data must be converted to character before encryption.

*« PASSWORD: A char or varchar string of at least six bytes and no more than 127 bytes. If
the value is null or not provided, the current value of the encryption password special reg-
ister will be used. Be aware that a password that is padded with blanks is not the same as
one that lacks the blanks.

e HINT: A char or varchar string of up to 32 bytes that can be referred to if one forgets
what the password is. It isincluded with the encrypted string and can be retrieved using
the GETHINT function.

The length of the output string can be calculated thus:

* When the hint is provided, the length of the input data, plus eight bytes, plus the distance
to the next eight-byte boundary, plus thirty-two bytes for the hint.

« When the hint is not provided, the length of the input data, plus eight bytes, plus the dis-
tance to the next eight-byte boundary.

SELECT I D
, NAMVE
, ENCRYPT(NAME, ' THAT I DI OT",’ MY BROTHER) AS NAME2
FROM STAFF
VWHERE | D < 30
CRDER BY 1 D;

Figure 243, ENCRYPT function example

EVENT_MON_STATE
Returns an operational state of a particular event monitor.

EXP
Returns the exponential function of the argument. The output format is double.

88 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH TEMP1(N1) AS ANSVEER
UNI ON ALL N1 El1 E2

SELECT NL + 1 e il ool

FROM TEMP1 +1. 00000000000000E+0 1

WHERE NI < 10) +2. 71828182845904E+0 2

SELECT NL +7. 38905609893065E+0 7
,EXP(NL) AS E1 +2.00855369231876E+1 20

. SVALLI NT(EXP(N1)) AS E2 +5. 45981500331442E+1 54

FROM TEMPL; . 48413159102576E+2 148
+4.03428793492735E+2 403
+1. 09663315842845E+3 1096
+2.98095798704172E+3 2980
+8. 10308392757538E+3 8103
+2. 20264657948067E+4 22026

QOO NOUIR_WNRFRO
+
[EY

[EnY

Figure 244, EXP function examples

FLOAT
Same as DOUBLE.

FLOOR

Returns the next largest integer value that is smaller than or equal to the input (e.g. 5.945 re-
turns 5.000). The output field type will equal the input field type.

SELECT D1 ANSVER (fl oat output shortened)
F1

JFLOOR(F1) AS F2 -cn-- e e i
FROM SCALAR; -2.4 -3, -2.400E+0 - 3. 000E+0
0.0 +0. +0.000E+0 +0. 000E+0
1.8 +1. +1.800E+0 +1.000E+0

Figure 245, FLOOR function examples

GENERATE_UNIQUE

Uses the system clock and node number to generate a value that is guaranteed unique (as long
as one does not reset the clock). The output is of type char(13) for bit data. There are no ar-
guments. The result is essentially atimestamp (set to GMT, not local time), with the node
number appended to the back.

SELECT 1D
, GENERATE_UNI QUE() AS UNI QUE_VAL#1
, DEC(HEX(GENERATE_UNI QUE()), 26) AS UNI QUE_VAL#2
FROM STAFF
WHERE ID < 50
ORDER BY | D;
ANSVER
ID UNIQUE VAL#1 UNIQUE VAL#2
NOTE: 2ND FI ELD => 10 20011017191648990521000000.
|'S UNPRI NTABLE. => 20 20011017191648990615000000.
30 20011017191648990642000000.
40 20011017191648990669000000.

Figure 246, GENERATE_UNIQUE function examples

Observe that in the above example, each row gets a higher value. Thisisto be expected, and
isin contrast to a CURRENT TIMESTAMP call, where every row returned by the cursor will
have the same timestamp value. Also notice that the second invocation of the function on the
same row got alower value (than the first).

Scalar Functions 89

Graeme Birchall ©

In the prior query, the HEX and DEC functions were used to convert the output value into a
number. Alternatively, the TIMESTAMP function can be used to convert the date component
of the datainto a valid timestamp. In a system with multiple nodes, there is no guarantee that

this timestamp (alone) is unique.

Making Random

Onething that DB2 lacks is a random number generator that makes unique values. However,
if we flip the characters returned in the GENERATE_UNIQUE output, we have something
fairly close to what is needed. Unfortunately, DB2 also lacks a REVERSE function, so the
dataflipping has to be done the hard way.

SELECT

, SUBSTR(UL, 20, 1)

Ul

SUBSTR(UL, 18, 1)
SUBSTR(UL, 16, 1)
SUBSTR(UL, 14, 1)
SUBSTR(UL, 12, 1)
SUBSTR(UL, 10, 1)
SUBSTR(UL, 08, 1)
SUBSTR(UL, 06, 1)
SUBSTR(UL, 04, 1)

SUBSTR(UL, 19, 1)
SUBSTR(U1, 17, 1)
SUBSTR(UL, 15, 1)
SUBSTR(UL, 13, 1)
SUBSTR(UL, 11, 1)
SUBSTR(UL, 09, 1)
SUBSTR(UL, 07, 1)
SUBSTR(UL, 05, 1)
SUBSTR(UL, 03, 1)

SUBSTR(UL, 02, 1) CONCAT SUBSTR(UL, 01, 1)
(SELECT HEX(GENERATE_UNI QUE()) AS UL
FROM STAFF

WHERE I D < 50) AS XXX

ORDER BY W2;

FROM

20000901131649119940000000
20000901131649119793000000
20000901131649119907000000 70991194613110900002
20000901131649119969000000 96991194613110900002

Figure 247, GENERATE_UNIQUE output, characters reversed to make pseudo-random

Observe above that we used a nested table expression to temporarily store the results of the
GENERATE_UNIQUE cdlls. Alternatively, we could have put a GENERATE _UNIQUE call
inside each SUBSTR, but these would have amounted to separate function calls, and thereisa
very small chance that the net result would not always be unique.

04991194613110900002
39791194613110900002

GETHINT
Returns the password hint, if one is found in the encrypted data.
SELECT ID
, NAVE
, GETHI NT(NAME2) AS HI NT
FROM (SELECT ID
, NAVE
, ENCRYPT(NAME, ' THAT | DI OT’,’ MY BROTHER) AS NAME2
FROM STAFF
WHERE | D < 30 ANSVER
)AS XXX —===—=—=—=—=—=—=—=—=—=========
ORDER BY I D; | D NAMVE HI NT

10 Sanders MY BROTHER
20 Pernal MY BROTHER

Figure 248, GETHINT function example

90 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

GRAPHIC

Converts the input (1st argument) to a graphic data type. The output length (2nd argument) is
optional.

HEX
Returns the hexadecimal representation of avalue. All input types are supported.
W TH TEMP1(N1) AS ANSVEER
UNI ON ALL S SHX DHX FHX

SELECT NL + 1

FROM TEMP1

WHERE NI < 3)

SELECT SMALLI NT(N1) AS S
, HEX(SMALLI NT(N1)) AS SHX
. HEX(DEC(NL, 4, 0)) AS DHX
, HEX(DOUBLE(N1)) AS FHX

FDFF 00003D 00000000000008C0
FEFF 00002D 00000000000000C0
FFFF 00001D 000000000000F0BF
00000C 0000000000000000
0100 00001C 000000000000F03F
0200 00002C 0000000000000040

WNPFRPORPNW!
o
o
o
o

FROM TEMPI, 0300 00003C 0000000000000840
Figure 249, HEX function examples, numeric data
SELECT C1 ANSVEER
, HEX(Cl) AS CHX et
, V1 C1 CHX V1 VHX
VHEX(VL) AS VHX mmee el Sl ol
FROM SCALAR; ABCDEF 414243444546 ABCDEF 414243444546
ABCD 414243442020 ABCD 41424344
AB 414220202020 AB 4142
Figure 250, HEX function examples, character & varchar
SELECT DT1 ANSVEER
, HEX(DT]_) AS DTHX ————-------———--------—-——-=—=—=—=====
T™ML DT1 DTHX T™L TIVHX

JHEX(TML) AS TMHX mmemmmmee mmmcomn ceeeao e

FROM SCALAR; 04/ 22/ 1996 19960422 23:58:58 235858
08/ 15/ 1996 19960815 15: 15: 15 151515

01/ 01/ 0001 00010101 00: 00: 00 000000

Figure 251, HEX function examples, date & time

HOUR
Returns the hour (as in hour of day) part of atime value. The output format is integer.
SELECT TML ANSVER
, HOUR(TML) AS HR ============
FROM SCALAR T™L HR
ORDER BY TML; e -
00: 00: 00 0
15:15:15 15
23:58:58 23

Figure 252, HOUR function example

IDENTITY_VAL_LOCAL

Returns the most recently assigned value (by the current user) to an identity column. The re-
sult typeis decimal (31,0), regardless of the field type of the identity column. See page 201
for detailed notes on using this function.

Scalar Functions 91

Graeme Birchall ©

CREATE TABLE SEQ¥

(1 DENT_VAL | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY
, CUR_TS TI MESTAMP NOT NULL
, PRI MARY KEY (1 DENT_VAL));
COW T,
I NSERT | NTO SEQ# VALUES(DEFAULT, CURRENT Tl MESTAMP) ;

ANSVEER
W TH TEMP (I DVAL) AS ======
(VALUES (| DENTI TY_VAL_LOCAL())) | DVAL
SELECT * e
FROM TEMP; 1.

Figure 253, IDENTITY_VAL_LOCAL function usage

INSERT

Insert one string in the middle of another, replacing a portion of what was already there. If the
valueto be inserted is either longer or shorter than the piece being replaced, the remainder of
the data (on the right) is shifted either left or right accordingly in order to make a good fit.

F INSERT (—— source ——, start-pos ——, del-bytes ——, new-valuef)g}

Figure 254, INSERT function syntax

Usage Notes
« Acceptableinput types are varchar, clob(1M), and blob(1M).
e Thefirst and last parameters must always have matching field types.

¢ Toinsert anew valuein the middle of another without removing any of what is already
there, set the third parameter to zero.

¢ Thevarchar output is aways of length 4K.

SELECT NAME ANSWER (4K out put fields shortened)
N NSERT(NAME, 3, 2, ' A) —oo———---—--oSo--So-S—-————-=—=—=—=====
, | NSERT(NAME, 3, 2, ' AB') NAME 2 3 4
VINSERT(NAME, 3, 2," ABC) =-mm-mmm mmmmmme mmemmce oo

FROM STAFF Sanders SaAers SaABers SaABCers

WHERE | D < 40; Per nal PeAal PeABal PeABCal

Mar enghi MaAnghi MaABnghi MaABCnghi
Figure 255, INSERT function examples

INT or INTEGER

The INTEGER or INT function converts either a number or avalid character value into an
integer. The character input can have leading and/or trailing blanks, and a sign indictor, but it
can not contain a decimal point. Numeric decimal input works just fine.

SELECT D1 ANSVEER
N NTECER(Dl) ——————————————————————————————=——=—=—=—=
, NT(" +123") D1 2 3 4 5
DINT(-123') deeel ol Tl il Tl
CINT(C 123 7) 2.4 -2 123 -123 123
FROM SCALAR; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 256, INTEGER function examples

92 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

JULIAN_DAY

Converts adate (or equivalent) value into a number which represents the number of days
since January the 1st, 4,713 BC. The output format is integer.

W TH TEMP1(DT1) AS ANSVEER
(VALUES ('’ 0001-01-01-00.00.00") ———————=——————————————=——==
. (* 1752- 09- 10- 00. 00. 00’ DT DY DJ
1('1993-01-03-00. 00.00°) mmeeeee i o
'(’ 1993-01- 03- 23. 59. 59’)) 01/ 01/ 0001 1 1721426
SELECT DATE(DT1) AS DT 09/10/ 1752 639793 2361218
, DAYS(DT1) AS DY 01/ 03/ 1993 727566 2448991
, JULI AN_DAY(DT1) AS DJ 01/ 03/ 1993 727566 2448991
FROM TEMP1;

Figure 257, JULIAN_DAY function example
Julian Days, A History

| happen to be a bit of an Astronomy nut, so what follows is a rather extended description
of Julian Days - their purpose, and history (taken from the web).

The Julian Day calendar is used in Astronomy to relate ancient and modern astronomical ob-
servations. The Babylonians, Egyptians, Greeks (in Alexandria), and others, kept very de-
tailed records of astronomical events, but they all used different calendars. By converting all
such observations to Julian Days, we can compare and correl ate them.

For example, asolar eclipse is said to have been seen at Ninevah on Julian day 1,442,454 and
alunar eclipse is said to have been observed at Babylon on Julian day number 1,566,839.
These numbers correspond to the Julian Calendar dates -763-03-23 and -423-10-09 respec-
tively). Thusthe lunar eclipse occurred 124,384 days after the solar eclipse.

The Julian Day number system was invented by Joseph Justus Scaliger (born 1540-08-05 Jin
Agen, France, died 1609-01-21 Jin Leiden, Holland) in 1583. Although the term Julian Cal-
endar derives from the name of Julius Caesar, the term Julian day number probably does not.
Evidently, this system was named, not after Julius Caesar, but after its inventor’s father, Julius
Caesar Scaliger (1484-1558).

The younger Scaliger combined three traditionally recognized temporal cycles of 28, 19 and
15 years to obtain a great cycle, the Scaliger cycle, or Julian period, of 7980 years (7980 is
the least common multiple of 28, 19 and 15). The length of 7,980 years was chosen as the
product of 28 times 19 times 15; these, respectively, are:

* The number of years when dates recur on the same days of the week.

e Thelunar or Metonic cycle, after which the phases of the Moon recur on aparticular day
in the solar year, or year of the seasons.

e Thecycleof indiction, originally a schedule of periodic taxes or government requisitions
in ancient Rome.

Thefirst Scaliger cycle began with Y ear 1 on -4712-01-01 (Julian) and will end after 7980
years on 3267-12-31 (Julian), which is 3268-01-22 (Gregorian). 3268-01-01 (Julian) isthe
first day of Year 1 of the next Scaliger cycle.

Astronomers adopted this system and adapted it to their own purposes, and they took noon
GMT -4712-01-01 as their zero point. For astronomers a day begins at noon and runs until the
next noon (so that the nighttime falls conveniently within one "day"). Thus they defined the
Julian day number of a day as the number of days (or part of aday) elapsed since noon GMT
on January 1st, 4713 B.C.E.

Scalar Functions 93

Graeme Birchall ©

Thiswas not to the liking of all scholars using the Julian day number system, in particular,
historians. For chronologists who start "days" at midnight, the zero point for the Julian day
number system is 00:00 at the start of -4712-01-01 J, and thisis day 0. This means that 2000
01-01 G is 2,451,545 JD.

Since most days within about 150 years of the present have Julian day numbers beginning
with "24", Julian day numbers within this 300-odd-year period can be abbreviated. In 1975
the convention of the modified Julian day number was adopted: Given a Julian day number
JD, the maodified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two
purposes:

e Daysbegin at midnight rather than noon.

* For datesin the period from 1859 to about 2130 only five digits need to be used to spec-
ify the date rather than seven.

MJD 0 thus corresponds to JD 2,400,000.5, which is twelve hours after noon on JD 2,400,000
= 1858-11-16. Thus MJD 0 designates the midnight of November 16th/17th, 1858, so day O
in the system of modified Julian day numbers isthe day 1858-11-17.

The following SQL statement uses the JULIAN_DAY function to get the Julian Date for cer-
tain days. The same calculation is aso done using hand-coded SQL.

SELECT BD
, JULI AN_DAY(BD)
(1461 * (YEAR(BD) + 4800 + (MONTH(BD) - 14) / 12))/ 4
%(7367 * (MONTH(BD)- 2 - 12*((NONTH(BD)-14)/12)))/12
- 3 * ((YEAR(BD) + 4900 + (MONTH(BD) - 14) / 12) 1 100)) / 4
+DAY(BD) - 32075
FROM (SELECT BI RTHDATE AS BD
FROM EMPLOYEE
WHERE MDINIT = 'R ANSVEER
) AS XXX —=——=—=—=-=——————=—=—=—=—=—==—=======
CORDER BY BD; BD 2 3

05/ 17/ 1926 2424653 2424653
03/ 28/ 1936 2428256 2428256
07/09/1946 2432011 2432011
04/ 12/ 1955 2435210 2435210

Figure 258, JULIAN_DAY function examples
Julian Dates

Many computer users think of the "Julian Date" as a date format that has a layout of "yynnn"
or "yyyynnn" where "yy" is the year and "nnn" is the number of days since the start of the
same. A more correct use of the term "Julian Date" refersto the current date according to the
calendar as originally defined by Julius Caesar - which has aleap year on every fourth year.
In the US/UK, this calendar was in effect until "1752-09-14". The days between the 3rd and
13th of September in 1752 were not used in order to put everything back in sync. In the 20th
and 21st centuries, to derive the Julian date one must subtract 13 days from the relevant Gre-
gorian date (e.g.1994-01-22 becomes 1994-01-07).

The following SQL illustrates how to convert a standard DB2 Gregorian Date to an equiva-
lent Julian Date (calendar) and a Julian Date (output format):

94 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

ANSVER

DT DJ1 DJ2
WTH TEMPL(DT1) AS mmmmeeeiee e oo
(VALUES (' 1997-01-01") 01/01/1997 12/17/1996 1997001
, (" 1997-01- 02’) 01/ 02/ 1997 12/ 18/ 1996 1997002
, (1 1997-12-31")) 12/ 31/ 1997 12/ 16/ 1997 1997365

SELECT DATE(DT1) AS DT

, DATE(DT1) - 15 DAYS AS DJ1

, YEAR(DT1) * 1000 + DAYOFYEAR(DT1) AS DJ2
FROM TEMPL:

Figure 259, Julian Date outputs

WARNING: DB2 does not make allowances for the days that were not used when English-
speaking countries converted from the Julian to the Gregorian calendar in 1752

LCASE or LOWER

Coverts amixed or upper-case string to lower case. The output is the same data type and
length as the input.

SELECT NAME ANSVER
, LCASE(NA[\/E) AS LNANVE ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—=—=====
, UCASE(NAME) AS UNAME NAVE LNAME UNAME
FROM ' STAFF il ol Ll
WHERE ID < 30; Sanders sanders SANDERS

Per nal per nal PERNAL
Figure 260, LCASE function example

Documentation Comment

According to the DB2 UDB V8.1 SQL Reference, the LCASE and UCASE functions are the
inverse of each other for the standard alphabetical characters, "a' to "z", but not for some odd
European characters. Therefore LCASE(UCASE(string)) may not equal LCASE(string).

This may be true from some code pages, but it is not for the one that | use. The following re-
cursive SQL illustrates the point. It shows that for every ASCII character, the use of both
functions gives the same result as the use of just one:

W TH TEMP1 (N1, Cl) AS ANSVEER

(VALUES (SMALLI NT(0), CHR(0)) —================

UNI ON ALL N1 C1L Ul U2 L1 L2

SELECT N1 + 1 fe e e e e -
,CHR(NL + 1) <no rows>

FROM TEMP1

WHERE N1 < 255

)
SELECT NL
,Cl
, UCASE(C1) AS UL
. UCASE(LCASE(C1)) AS W2
, LCASE(C1) AS L1
. LCASE(UCASE(C1)) AS L2
FROM TEMP1
WHERE UCASE(Cl) <> UCASE(LCASE(Cl))
OR LCASE(C1) <> LCASE(UCASE(Cl));

Figure 261, LCASE and UCASE usage on special characters

LEFT

The LEFT function has two arguments: Thefirst is an input string of type char, varchar, clob,
or blob. The second is a positive integer value. The output is the left most charactersin the
string. Trailing blanks are not removed.

Scalar Functions 95

W TH TEMP1(C1) AS
(VALUES (° ABC)

, (" ABC)
, ("ABC "))
SELECT Cl1

,LEFT(CL, 4) AS C2
. LENGTH(LEFT(C1, 4)) AS L2
FROM TEMPL;

Figure 262, LEFT function examples

Graeme Birchall ©

ANSVER
a @ L2
ABC AB 4
ABC ~ ABC 4
ABC ~ ABC 4

If theinput is either char or varchar, the output is varchar(4000). A column thislong isa nui-
sance to work with. Where possible, use the SUBSTR function to get around this problem.

LENGTH

Returns an integer value with the internal length of the expression (except for double-byte
string types, which return the length in characters). The value will be the same for al fieldsin
a column, except for columns containing varying-length strings.

SELECT LENGTH(D1)

, LENGTH(F1)

, LENGTH(S1)

. LENGTH(C1)

, LENGTH(RTRI M C1))
FROM SCALAR

Figure 263, LENGTH function examples

+0. 00000000000000E+000
+4.81218435537241E+000
+7.11801620446533E+000
+9. 42100640177928E+000

LN or LOG
Returns the natural logarithm of the argument (same as LOG). The output format is double.
W TH TEMP1(N1) AS ANSVEER
(VALUES (1), (123), (1234) =======
, (12345), (123456)) N1
SELECT NL T Ll
, LOG(N1) AS L1 1
FROM TEMPL; 123
1234
12345
123456

Figure 264, LOG function example

LOCATE

+1.17236400962654E+001

Returns an integer value with the absol ute starting position of the first occurrence of the first
string within the second string. If there is no match the result is zero. The optional third pa-

rameter indicates where to start the search.
F LOCATE (—find-string —, look-in-string

Figure 265, LOCATE function syntax

)
L, start-pos.] }

Theresult, if thereis amatch, is always the absolute position (i.e. from the start of the string),

not the relative position (i.e. from the starting position).

96

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT C1 ANSVEER
) LmATE(’ D 5 Cl) e ————————————————
,LOCATE(’ D', C1,2) c1 2 3 4 5
LOCATE(’ EF ,C1) e
,LOCATE(’ A', C1,2) ABCDEF 4 4 5 0

FROM SCALAR; ABCD 4 4 0 0

AB o 0 0 0

Figure 266, LOCATE function examples

LOG or LN
See the description of the LN function.

LOG10
Returns the base ten logarithm of the argument. The output format is double.
W TH TEMP1(N1) AS ANSVEER
(VALUES (]_) , (123) , (1234) ——————————————————————————————=—
, (12345), (123456)) N1 L1
SELECT NI e e e i m o
, LOGLO(N1) AS L1 1 +0. 00000000000000E+000
FROM TEMPL, 123 +2. 08990511143939E+000
1234 +3. 09131515969722E+000
12345 +4.09149109426795E+000
123456 +5.09151220162777E+000

Figure 267, LOG10 function example

LONG_VARCHAR

Converts the input (1st argument) to along_varchar data type. The output length (2nd argu-

ment) is optional.

LONG_VARGRAPHIC

Converts the input (1st argument) to along_vargraphic data type. The output length (2nd ar-

gument) is optional.

LOWER
See the description for the LCASE function.

LTRIM
Remove leading blanks, but not trailing blanks, from the argument.
W TH TEMP1(Cl) AS ANSVER
(VALUES (’ ABC) ————————=—=—=—=—=—=
, (" ABC) c1 2
("ABC 7)) e e
SELECT Cl1 ABC ABC
,LTRIM C1) AS 2 ABC ABC
, LENGTH(LTRI M Cl1)) AS L2 ABC ABC
FROM TEMPIL;

Figure 268, LTRIM function example

MICROSECOND

Returns the microsecond part of atimestamp (or equivalent) value. The output is integer.

Scalar Functions

97

SELECT TSl
, M CROSECOND(TS1)

FROM SCALAR

ORDER BY TSI;

Graeme Birchall ©

ANSVER

U 2
0001- 01- 01- 00. 00. 00. 000000 0
1996- 04- 22- 23. 58. 58. 123456 123456
1996- 08- 15- 15. 15. 15. 151515 151515

Figure 269, MICROSECOND function example

MIDNIGHT_SECONDS

Returns the number of seconds since midnight from atimestamp, time or equivalent value.

The output format is integer.

SELECT TS1
, M DNI GHT _SECONDS(TS1)
. HOUR(TS1) *3600 +
M NUTE(TS1) *60 +

SECOND(TS1)
FROM SCALAR
ORDER BY TSI;

0001-01-01-00. 00. 00. 000000 0 0
1996- 04- 22- 23. 58. 58. 123456 86338 86338
1996- 08- 15-15. 15. 15. 151515 54915 54915

Figure 270, MIDNIGHT_SECONDS function example

There is no single function that will convert the MIDNIGHT_SECONDS output back into a
valid time value. However, it can be done using the following SQL :

W TH TEMPL (MB) AS
(SELECT M DNI GHT _SECONDS(TS1)
FROM SCALAR

)
SELECT MBS
, SUBSTR(DI G TS(Ms/ 3600

.9
SUBSTR(DI GI TS((M5- ((M5/ 3600) * 3600)) / 60 3,93
SUBSTR(DI Gi TS(MB- ((M5/ 60) * 60)). 9)

FROM TEMP1
ORDER BY 1;

0 00: 00: 00
54915 15:15:15
86338 23:58:58

Bl
|]
s

I
I
AS

Figure 271, Convert MIDNIGHT_SECONDS output back to a time value

NOTE: Imagine a column with two timestamp values: "1996-07-15.24.00.00" and "1996-
07-16.00.00.00". These two values represent the same point in time, but will return differ-
ent MIDNIGHT_SECONDS results. See the chapter titled "Quirks in SQL" on page 257 for

a detailed discussion of this problem.

MINUTE

Returns the minute part of atime or timestamp (or equivalent) value. The output isinteger.

SELECT TS1
, M NUTE(TS1)

FROM SCALAR

ORDER BY TSI;

Figure 272, MINUTE function example

98

ANSVER

U 2
0001- 01- 01- 00. 00. 00. 000000 0
1996- 04- 22- 23. 58. 58. 123456 58
1996- 08- 15- 15. 15. 15. 151515 15

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

MOD

Returns the remainder (modulus) for the first argument divided by the second. In the follow-
ing example the last column uses the MOD function to get the modulus, while the second to
last column obtains the same result using simple arithmetic.

W TH TEMPL(NL, N2) AS ANSVER
(VALUES (— 31‘ +11) e
UNION ALL NL N2 DIV ML M2
SELECT NL + 13
SN2 - 4 -31 11 -2 -9 -9
FROM TEMP1 -18 7 2 -4 -4
WHERE NI < 60 5 3 -1 -2 -2
) 8 -1 -8 0 0
SELECT N1 21 -5 -4 1 1
% 34 -9 -3 7 7
, N1/ N2 AS DIV 47 -13 -3 8 8
. NL- ((N1/ N2) *N2) AS MDL 60 -17 -3 9 9
, MOD(N1, N2) AS MD2
FROM TEMPL
ORDER BY 1;

Figure 273, MOD function example

MONTH

Returns an integer value in the range 1 to 12 that represents the month part of a date or time-
stamp (or equivalent) value.

MONTHNAME

Returns the name of the month (e.g. October) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT DT1 ANSVER
, |\/0\|TH(DT]_) ——=—=—=—=—=—=—=—=—==—=—==—=—=—======
, MONTHNAME(DT1) DTl 2 3
FROM SCALAR Tl S
ORDER BY DT1; 01/01/ 0001 January

1
04/22/1996 4 April
08/15/1996 8 August

Figure 274, MONTH and MONTHNAME functions example

MULTIPLY_ALT

Returns the product of two arguments as a decimal value. Use this function instead of the
multiplication operator when you need to avoid an overflow error because DB2 is putting
aside too much space for the scale (i.e. fractional part of number) Valid input is any exact
numeric type: decimal, integer, bigint, or smallint (but not float).

WTH TEMPL (N1, N2) AS

(VALUES (DECI MAL(1234, 10) ANSVER
, DECI MAL(1234, 10))) ========
SELECT NL >> 1234,
N2 >> 1234,
CNL % N2 AS P1 >> 1522756.
LU (NL, N2) AS P2 >> 1522756.
, MULTI PLY_ALT(NL, N2) AS P3 >> 1522756.

FROM TEMPL;
Figure 275, Multiplying numbers - examples

When doing ordinary multiplication of decimal values, the output precision and the scaleis
the sum of the two input precisions and scales - with both having an upper limit of 31. Thus,

Scalar Functions 99

Graeme Birchall ©

multiplying a DEC(10,5) number and a DEC(4,2) number returns a DEC(14,7) number. DB2
alwaystriesto avoid losing (truncating) fractional digits, so multiplying a DEC(20,15) hum-

ber with a DEC(20,13) number returns a DEC(31,28) number, which is probably going to be
too small.

The MULTIPLY _ALT function addresses the multiplication overflow problem by, if need be,
truncating the output scale. If it is used to multiply a DEC(20,15) number and a DEC(20,13)
number, the result isa DEC(31,19) number. The scale has been reduced to accommodate the
required precision. Be aware that when there is aneed for a scale in the output, and it is more
than three digits, the function will leave at least three digits.

Below are some examples of the output precisions and scales generated by this function:
<--MULTI PLY_ALT- >

RESULT RESULT SCALE PRECSI ON
| NPUT#1 INPUT#2 ~ "*" OPERATOR MULTIPLY ALT TRUNCATD TRUNCATD
DEC(05, 00) DEC(05, 00) DEC(10, 00) DEC(10, 00) NO NO
DEC(10, 05) DEC(11,03) DEC(21, 08) DEC(21, 08) NO NO
DEC(20, 15) DEC(21,13) DEC(31, 28) DEC(31, 18) YES NO
DEC(26, 23) DEC(10, 01) DEC(31, 24) DEC(31, 19) YES NO
DEC(31,03) DEC(15,08) DEC(31,11) DEC(31, 03) YES YES

Figure 276, Decimal multiplication - same output lengths

NODENUMBER

Returns the partition number of the row. The result is zero if the tableis not partitioned. The
output is of type integer, and is never null.

NODENUMBER — (— column-name —) }
Figure 277, NODENUMBER function syntax
SELECT NODENUMBER(|1 D) AS NN ANSVER
FROM STAFF ======
WHERE ID = 10; NN
0

Figure 278, NODENUMBER function example

The NODENUMBER function will generate a SQL error if the column/row used can not be
related directly back to specific row in areal table. Therefore, one can not use this function on
fieldsin GROUP BY statements, nor in some views. It can also cause an error when used in
an outer join, and the target row failed to match in the join.

NULLIF
Returns null if the two values being compared are equal, otherwise returns the first value.
SELECT S1 ANSVEER
, CL s1 2 4
JNULLIF(CL, " AB') ae eee e aaeo
FROM SCALAR -2 -2 ABCDEF ABCDEF
WHERE NULLIF(0,0) IS NULL; 0 - ABCD ABCD
1 1 AB

Figure 279, NULLIF function examples

PARTITION

Returns the partition map index of the row. The result is zero if the table is not partitioned.
The output is of type integer, and is never null.

100 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT PARTITION(I D) AS PP ANSVEER

FROM STAFF ======

VWHERE ID = 10; PP
POSSTR

Returns the position at which the second string is contained in the first string. If thereisno
match the value is zero. Thetest is case sensitive. The output format is integer.

SELECT C1 ANSVEER
y P(BSTR(C1| ’ ’) AS Pl e —————————

, PCSSTR(C1,’ CD') AS P2 C1 P1L P2 P3

, POSSTR(C1, ¢cd’) ASP3 a----- - - -

FROM SCALAR AB 3 0 0
ORDER BY 1; ABCD 5 3 0
ABCDEF 0 3 0

Figure 280, POSSTR function examples
POSSTR vs. LOCATE

The LOCATE and POSSTR functions are very similar. Both look for matching strings
searching from the left. The only functional differences are that the input parameters are re-
versed and the LOCATE function enables one to begin the search at somewhere other than
the start. When either is suitable for the task at hand, it is probably better to use the POSSTR
function because it isa SY SIBM function and so should be faster.

SELECT C1 ANSVEER
, P(BSTR(cL,) AS P1 —==——=—=—=—=—=-—=—=—=———=—=—-—=—==—=—=====
, LOCATE(" ', Cl1) AS L1 Cl P1 L1 P2 L2 P3 L3 L4
' POSSTR(CL, ' CD') AS P2 el LD LD DD T
, LOCATE(* CD',Cl) AS L2 AB 3 3 0 0 0 0 O
'POSSTR(CL, ' cd') AS P3 ABCD 5 5 3 3 0 0 4
, LOCATE(' cd’,Cl) AS L3 ABCDEF 0 0 3 3 0 0 4

,LOCATE(' D', Cl, 2) AS L4
FROM SCALAR
ORDER BY 1;

Figure 281, POSSTR vs. LOCATE functions

POWER
Returns the value of the first argument to the power of the second argument
W TH TEMP1(N1) AS ANSVEER
(VALUES (]_) , (]_O) , (100)) ——=======
SELECT N1 N1 P1 P2 P3
JPOMER(NL, 1) AS PL e e el il
' PONER(NL. 2) AS P2 1 1 1 1
, PONER(N1, 3) AS P3 10 10 100 1000
FROM TEMP1; 100 100 10000 1000000

Figure 282, POWER function examples

QUARTER

Returns an integer value in the range 1 to 4 that represents the quarter of the year from a date
or timestamp (or equivalent) value.

RADIANS

Returns the number of radians converted from the input, which is expressed in degrees. The
output format is double.

Scalar Functions 101

Graeme Birchall ©

RAISE_ERROR

Causes the SQL statement to stop and return a user-defined error message when invoked.
There are alot of usage restrictions involving this function, see the SQL Reference for details.

H RAISE_ERROR- (- sglstate — ,error-message—) —}

Figure 283, RAISE_ERROR function syntax

SELECT S1 ANSVER
y CASE s p———
WHEN S1 < 1 THEN S1 s1 2
ELSE RAI SE ERROR(’ 80001',Cl) ieeoo ool
END AS S2 -2 -2
FROM SCALAR 0 0

SQLSTATE=80001
Figure 284, RAISE_ERROR function example

RAND

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 259 for a detailed description of this issue.

Returns a pseudo-random floating-point value in the range of zero to one inclusive. An op-
tional seed value can be provided to get reproducible random results. Thisfunction is espe-
cialy useful when oneistrying to create somewhat realistic sample data.

Usage Notes

e The RAND function returns any one of 32K distinct floating-point valuesin the range of
zero to oneinclusive. Note that many equivalent functions in other languages (e.g. SAS)
return many more distinct values over the same range.

» Thevaues generated by the RAND function are evenly distributed over the range of zero
to oneinclusive.

« A seed can be provided to get reproducible results. The seed can be any valid number of
typeinteger. Note that the use of a seed alone does not give consistent results. Two dif-
ferent SQL statements using the same seed may return different (but internally consistent)
sets of pseudo-random numbers.

* |f theseed valueiszero, theinitial result will aso be zero. All other seed values return
initial values that are not the same as the seed. Subsequent calls of the RAND function in
the same statement are not affected.

e If there are multiple references to the RAND function in the same SQL statement, the
seed of the first RAND invocation is the one used for all.

« If the seed valueis not provided, the pseudo-random numbers generated will usualy be
unpredictable. However, if some prior SQL statement in the same thread has already in-
voked the RAND function, the newly generated pseudo-random numbers "may" continue
where the prior ones left off.

Typical Output Values

The following recursive SQL generates 100,000 random numbers using two as the seed value.
The generated data is then summarized using various DB2 column functions:

102 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

WTH TEWP (NUM RAN) AS
(VALUES (1 NT(1)

, RAND(2))
UNI ON ALL
SELECT NUM + 1
, RAND()
FROM TEMP
WHERE NUM < 100000 ANSVEER
) ===
SELECT COUNT(*) AS #ROWS ==> 100000
, COUNT(DI STI NCT RAN) AS #VALUES ==> 31242
, DEC(AVG(RAN) , 7, 6) AS AVG RAN ==> 0. 499838
, DEC(STDDEV(RAN), 7, 6) AS STD_DEV 0. 288706
, DEC(M N(RAN) , 7, 6) AS M N_RAN 0. 000000
, DEC{ MAX(RAN) , 7, 6) AS MAX_RAN 1. 000000
, DEC{ MAX(RAN) , 7, 6) -
DEC(M N(RAN) , 7, 6) AS RANGE 1. 000000
, DEC(VAR(RAN) , 7, 6) AS VARI ANCE 0. 083351
FROM TEMP;

Figure 285, Sample output from RAND function

Observe that less than 32K distinct numbers were generated. Presumably, thisis because the
RAND function uses a 2-byte carry. Also observe that the values range from a minimum of
zero to a maximum of one.

WARNING: Unlike most, if not all, other numeric functions in DB2, the RAND function re-
turns different results in different flavors of DB2.

Reproducible Random Numbers

The RAND function creates pseudo-random numbers. This means that the output looks ran-
dom, but it is actually made using a very specific formula. If the first invocation of the func-
tion uses a seed value, all subsequent invocations will return aresult that is explicitly derived
fromtheinitial seed. Toillustrate this concept, the following statement selects six random
numbers. Because of the use of the seed, the same six values will aways be returned when
this SQL statement isinvoked (when invoked on my machine):

SELECT DEPTNO AS DNO ANSVEER

, RAND(O) AS RAN ———————--=—=—=———=—=—=—=—=—=—=—=—=—====
FROM DEPARTMENT DNO RAN
WHERE DEPTNO < ' E' .
ORDER BY 1; AO0 +1.15970336008789E- 003

BO1 +2.35572374645222E-001
C01 +6.48152104251228E-001
D01 +7.43736075930052E- 002
D11 +2.70241401409955E- 001
D21 +3.60026856288339E- 001

Figure 286, Make reproducible random numbers (use seed)

To get random numbers that are not reproducible, simply leave the seed out of the first invo-
cation of the RAND function. To illustrate, the following statement will give differing results
with each invocation:

SELECT DEPTNO AS DNO ANSVER

, RAN[X) AS RAN —o——-oo——--———-—=———=—=—=—=====
FROM DEPARTMENT DNO RAN
WHERE DEPTNO < ' D e
CRDER BY 1, A00 +2.55287331766717E-001

BO1 +9.85290078432569E- 001
C01 +3.18918424024171E-001

Figure 287, Make non-reproducible random numbers (no seed)

Scalar Functions 103

Graeme Birchall ©

NOTE: Use of the seed value in the RAND function has an impact across multiple SQL
statements. For example, if the above two statements were always run as a pair (with
nothing else run in between), the result from the second would always be the same.

Generating Random Values

Imagine that we need to generate a set of reproducible random numbers that are within a cer-
tain range (e.g. 5 to 15). Recursive SQL can be used to make the rows, and various scalar
functions can be used to get the right range of data.

In the following example we shall make alist of three columns and ten rows. Thefirst field is
a simple ascending sequence. The second is a set of random numbers of type smallint in the
range zero to 350 (by increments of ten). Thelast is a set of random decimal numbersin the
range of zero to 10,000.

W TH TEMP1 (COL1, COL2, COL3) AS ANSVEER
(VALUES (0 e ——————————
, SMALLI NT(RAND(2) *35) *10 COLl COo2 ca3
, DECI MAL(RAND() * 10000, 7, 2)) .
UNI ON ALL 0 9342.32

SELECT COL1 + 1

, SMALLI NT(RAND() *35) * 10

, DECI MAL(RAND() * 10000, 7, 2)
FROM TEMPL
WHERE COL1 + 1 < 10

) 130 8602. 86
SELECT * 340 184. 94
FROM TEMP1; 310 5441.14

©CONOUIAWNRFO
a
o
4]
al
©
©
\‘
~

70 9267.55
Figure 288, Use RAND to make sample data

NOTE: See the section titled "Making Sample Data" for more detailed examples of using
the RAND function and recursion to make test data.

Making Many Distinct Random Values

The RAND function generates 32K distinct random values. To get alarger set of (evenly dis-
tributed) random values, combine the result of two RAND calls in the manner shown below
for the RAN2 column:

W TH TEMPL (COL1, RANL, RAN2) AS ANSVER
, RAND(2) COL#1 RAN#1 RAN#2
JRAND() +(RAND()/1E5)) e e e
UNI ON ALL 30000 19698 29998
SELECT COL1 + 1
, RAND()
" RAND() +(RAND()/ 1E5)
FROM TEMP1

WHERE COL1 + 1 < 30000

)

SELECT COUNT(*) AS COL#1
, COUNT(DI STI NCT RAN1) AS RAN#1
, COUNT(DI STI NCT RAN2) AS RAN#2

FROM TEMP1;

Figure 289, Use RAND to make many distinct random values

Observe that we do not multiply the two values that make up the RAN2 column above. If we
did this, it would skew the average (from 0.5 to 0.25), and we would always get a zero when-
ever either one of the two RAND functions returned a zero.

NOTE: The GENERATE_UNIQUE function can also be used to get a list of distinct values,
and actually does a better job that the RAND function. With a bit of simple data manipula-
tion (see page 89), these values can also be made random.

104 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Selecting Random Rows, Percentage

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 259 for a detailed description of this issue.

Imagine that you want to select approximately 10% of the matching rows from some table.
The predicate in the following query will do the job:

SELECT 1D ANSVEER
y NA'\/E e ——
FROM STAFF ID NAMVE
VWHERE RAND() < 0.1 e e
ORDER BY | D 140 Fraye
190 Snei der
290 Quill

Figure 290, Randomly select 10% of matching rows

The RAND function randomly generates values in the range of zero through one, so the above
query should return approximately 10% the matching rows. But it may return anywhere from
zero to al of the matching rows - depending on the specific values that the RAND function
generates. If the number of rows to be processed is large, then the fraction (of rows) that you
get will be pretty close to what you asked for. But for small sets of matching rows, the result
set size is quite often anything but what you wanted.

Selecting Random Rows, Number

The following query will select five random rows from the set of matching rows. It begins (in
the nested table expression) by using the ROW_NUMBER function to assign row numbers to
the matching rows in random order (using the RAND function). Subsequently, those rows
with the five lowest row numbers are selected:

SELECT I D ANSVER
y NANE e ——————
FROM (SELECT S.* ID NAME
, ROV NUVBER() OVER(ORDER BY RAND()) AS R --- --------
FROM STAFF S 10 Sanders
) AS XXX 30 Mar enghi
VWHERE R<=5 190 Snei der
ORDER BY I D 270 Lea
280 W son

Figure 291, Select five random rows
Use in DML

Imagine that in act of inspired unfairness, we decided to update a selected set of employee’s
salary to arandom number in the range of zero to $10,000. Thistoo is easy:
UPDATE STAFF

SET SALARY = RAND()*10000
VWHERE I D < 50;

Figure 292, Use RAND to assign random salaries

REAL

Returns a single-precision floating-point representation of a number.

Scalar Functions 105

Graeme Birchall ©

ANSVERS
SELECT NL AS DEC => 1234567890. 123456789012345678901
, DOUBLE(NL) AS DBL => 1. 23456789012346e+009
. REAL(N1) AS REL => 1. 234568e+009
I NTEGER(N1) AS | NT = 1234567890
BI G NT(NL) AS BI G 1234567890
FROM (SELECT 1234567890. 123456789012345678901 AS NI

FROM STAFF
VWHERE ID = 10) AS XXX;

Figure 293, REAL and other numeric function examples

REC2XML
Returns a string formatted with XML tags and containing column names and column data.

REPEAT
Repeats a character string "n" times.

H REPEAT — (— string-to-repeat — , #times —) }

Figure 294, REPEAT function syntax

SELECT 1D ANSVER

, CHAR(REPEAT(NAIVE, 3) , 40) ———=—=—=—=—=—=—==—=—=—=—==—=—=—=—========
FROM STAFF ID 2
WHERE ID < 40 e e eeea—ao--
ORDER BY | D 10 Sander sSander sSander s

20 Per nal Per nal Per nal
30 Mar enghi Mar enghi Mar enghi

Figure 295, REPEAT function example

REPLACE
Replaces all occurrences of one string with another. The output is of type varchar(4000).

H REPLACE— (— string-to-change — , search-for — , replace-with —) —}

Figure 296, REPLACE function syntax

SELECT C1 ANSVEER
y REPLACE(Cl, ! AB’ y ! XY,) AS Rl oo s
, REPLACE(CL, 'BA'," XY') AS R2 C1 R1 R2

FROM ~ SCALAR e eeies e

Figure 297, REPLACE function examples

The REPLACE function is case sensitive. To replace an input value, regardless of the case,
one can nest the REPLACE function calls. Unfortunately, this technique getsto be alittle
tedious when the number of charactersto replaceislarge.

SELECT C1 ANSVER
REPLACE(REPLACE(CL, c1 RL
TAB L, XY'),abn, XY'), il il
"Ab XY), aB XY) ABCDEF XYCDEF
FROM SCALAR ABCD XYCD
AB XY

Figure 298, Nested REPLACE functions

106 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

RIGHT

Has two arguments: Thefirst is an input string of type char, varchar, clob, or blob. The sec-
ond is a positive integer value. The output, of type varchar(4000), is the right most characters
in the string.

W TH TEMP1(C1) AS

(VALUES (* ABC)
(" ABC ")
, ("ABC "))
SELECT Cl

, RIGHT(C1,4) AS C2

, LENGTH(RI GHT(C1, 4)) AS L2

FROM

Figure 299, RIGHT function examples

ROUND

TEWMP1;

ABC
ABC

ABC

ABC
ABC
BC

Rounds the rightmost digits of number (1st argument). If the second argument is positive, it
rounds to the right of the decimal place. If the second argument is negative, it rounds to the
left. A second argument of zero results rounds to integer. The input and output types are the
same, except for decimal where the precision will be increased by one - if possible. Therefore,
aDEC(5,2)field will be returned as DEC(6,2), and a DEC(31,2) field as DEC(31,2). To trun-
cate instead of round, use the TRUNCATE function.

W TH TEMP1(D1) AS
(VALUES (123. 400)

SELECT

, DEC(ROUND(D1, +2)
, DEC(ROUND(D1, +1) ,
, DEC{ ROUND(D1, +0)
, DEC(ROUND(D1, - 1),
, DEC(ROUND(D1, - 2)

FROM

,(23. 450)
(3.456)
, (. 056))
D1

TEWMP1;

123. 400 123
23.450 23
3.456 3
0.056 O

AS P2
AS P1
AS PO
AS N1
AS N2

Figure 300, ROUND function examples

RTRIM

Trims the right-most blanks of a character string.

SELECT

c1
RTRI M C1)
LENGTH(C1)

AS R1
AS R2

, LENGTH(RTRI M C1)) AS R3

FROM

Figure 301, RTRIM function example

SECOND

SCALAR

23. 400
3.500
0. 100

23. 000
3. 000
0. 000

20. 000
0. 000
0. 000

.400 123.400 123.000 120.000 100. 000

0. 000
0. 000
0. 000

Returns the second (of minute) part of atime or timestamp (or equivalent) value.

Scalar Functions

107

Graeme Birchall ©

SIGN

Returns -1 if the input number is lessthan zero, O if it equals zero, and +1 if it is greater than
zero. The input and output types will equal, except for decimal which returns double.

SELECT D1 ANSVER (fl oat output shortened)
, Sl G\](D]_) e
, F1 D1 2 F1 4
PSIGN(FL) mmeeeceeeeiil il il

FROM SCALAR; - - 1. 000E+0 -2.400E+0 - 1. 000E+0

2.4
0.0 +0. 000E+0 +0. O00E+0 +0. 000E+0
1.8 +1. 000E+0 +1. 800E+0 +1. 000E+0

Figure 302, SGN function examples

SIN

Returnsthe SIN of the argument where the argument is an angle expressed in radians. The
output format is double.

W TH TEMP1(N1) AS ANSVEER
(VALUES (0) —=—====—=====—============
UNI ON ALL N1 RAN SIN TAN
SELECT N1 + 10 - mmmee mmeee eao--
FROM TEMP1 0 0.000 0.000 0.000
WHERE N1 < 80) 10 0.174 0.173 0.176
SELECT N1 20 0.349 0.342 0.363
, DEC(RADI ANS(N1) , 4, 3) AS RAN 30 0.523 0.500 O0.577
' DEC(S| N(RADI ANS(N1)) , 4, 3) AS SI N 40 0.698 0.642 0.839
' DEC{ TAN(RADI ANS(N1)) . 4. 3) AS TAN 50 0.872 0.766 1.191
FROM TEMP1; 60 1.047 0.866 1.732
70 1.221 0.939 2.747
80 1.396 0.984 5.671

Figure 303, SN function example

SINH

Returns the hyperbalic sin for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

SMALLINT
Converts either a number or avalid character value into asmallint value.
SELECT D1 ANSVEER
, SMALLI NT(D]_) ———---------—=———------———--—-—=—=—====
" SMALLI NT(’ +123") DL 2 3 4 5

CSMALLINT(? -123') mee e oo e e

SMALLINT(® 123 ') -2.4 2 123 -123 123
FROM SCALAR 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 304, SVIALLINT function examples

SNAPSHOT Functions

The various SNAPSHOT functions can be used to analyze the system. They are beyond the
scope of this book. Refer instead to the DB2 System Monitor Guide and Reference.

SOUNDEX

Returns a 4-character code representing the sound of the words in the argument. Use the DIF-
FERENCE function to convert words to soundex values and then compare.

108 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SELECT A. NAME AS N1 ANSVER
, SQJNDEX(A. NANE) AS S1 ——=——=—-=———-—--———=———=——=——===—====
, B. NAME AS N2 N1 S1 N2 S2 DF
, SOUNDEX(B. NAVE) AS S2 mmmmmom mmem aeeeiaiao o --
, DI FFERENCE Sanders S536 Snei der S636 4
(A NAME, B. NAME) AS DF Sanders S536 Snith S530 3
FROM STAFF A Sanders S536 Lundqui st L532 2
, STAFF B Sanders S536 Daniels D542 1
VWHERE A ID =10 Sanders S536 Molinare M56 1
AND B.1D > 150 Sanders S536 Scoutten S350 1
AND B.1D < 250 Sanders S536 Abrahams Al165 O
ORDER BY DF DESC Sanders S536 Kermisch K652 0
, N2 ASC; Sanders S536 Lu LO0O0 O

Figure 305, SOUNDEX function example

SOUNDEX Formula

There are several minor variations on the SOUNDEX algorithm. Below is one example:
e Thefirst letter of the nameis left unchanged.

e ThelettersW and H are ignored.

e« Thevowels A, E, I,O,U,and Y are not coded, but are used as separators (see 5).

¢ Theremaining letters are coded as:

B,P,FV 1
CGJKQSX,Z 2
D, T 3
L 4
M, N 5
R 6

» Lettersthat follow letters with same code are ignored unless a separator (seeitem 3
above) precedes them.

The result of the above calculation is afour byte value. The first byteis a character as defined
in step one. The remaining three bytes are digits as defined in steps two through four. Output
longer than four bytesistruncated If the output is not long enough, it is padded on the right
with zeros. The maximum number of distinct valuesis 8,918.

NOTE: The SOUNDEX function is something of an industry standard that was developed
several decades ago. Since that time, several other similar functions have been devel-
oped. You may want to investigate writing your own DB2 function to search for similar-
sounding names.

SPACE
Returns a string consisting of "n" blanks. The output format is varchar(4000).
W TH TEMP1(N1) AS ANSVER
SELECT N1 N1 S1 S2 S3
, SPACE(N1) AS S1 - Tl Io Tl
, LENGTH(SPACE(N1)) AS S2 1 1 X
, SPACE(NL) || X AS S3 2 2 X
FROM TEMPL; 3 3 X

Figure 306, SPACE function examples

Scalar Functions 109

Graeme Birchall ©

SQLCACHE_SNAPSHOT

DB2 maintains a dynamic SQL statement cache. It also has severa fields that record usage of
the SQL statements in the cache. The following command can be used to access this data:

DB2 CET SNAPSHOT FOR DYNAM C SQL ON SAMPLE WRI TE TO FI LE

Nurber of executions 8
Nurmber of conpil ations 1
Wor st preparation time (ns) 3
Best preparation tinme (ns) 3

Rows del et ed = Not Col |l ected
Rows inserted = Not Coll ected
Rows read = Not Col |l ected
Rows updat ed = Not Col |l ected
Rows written = Not Col |l ected
St atenent sorts = Not Coll ected
Total execution tine (sec.ns) = Not Col |l ected
Total user cpu tinme (sec.ns) = Not Col |l ected
Total systemcpu tine (sec.ns) = Not Collected
St at enent text = select min(dept) fromstaff

Figure 307, GET SNAPSHOT command

The SQLCACHE_SNAPSHOT table function can aso be used to obtain the same data - this
timein tabular format. One first hasto run the above GET SNAPSHOT command. Then one
can run aquery like the following:

SELECT *

FROM TABLE(SQLCACHE_SNAPSHOT()) SS
WHERE SS. NUM_EXECUTI ONS <> 0;

Figure 308, SQLCACHE_SNAPSHOT function example

If one runsthe RESET MONITOR command, the above execution and compilation counts
will be set to zero, but all other fieldswill be unaffected.

The following query can be used to list al the columns returned by this function:

SELECT ORDI NAL AS COLNO
, CHAR(PARMNANE, 18) AS COLNANE
, TYPENANE AS COLTYPE
, LENGTH
, SCALE

FROM SYSCAT. FUNCPARVS

VWHERE FUNCSCHENVA
AND FUNCNAVE
ORDER BY CCLNG,

Figure 309, List columns returned by SQLCACHE SNAPSHOT

* SYSFUN
* SQLCACHE_SNAPSHOT’

SQRT

Returns the square root of the input value, which can be any positive number. The output
format is double.

W TH TEMPL(NL1) AS ANSVER

(VALUES (0.5), (0.0) S —
,(1.0),(2.0)) NL s1

SELECT DEC(N1, 4, 3) AS NL il TTll

, DEC(SQRT(NL) , 4, 3) AS Sl 0.500 0.707

FROM TEMPL; 0.000 0. 000

1.000 1.000

2.000 1.414

Figure 310, SOQRT function example

110 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

SUBSTR

Returns part of a string. If the length is not provided, the output is from the start value to the
end of the string.

F SUBSTR (

Figure 311, SUBSTR function syntax

If the length is provided, and it islonger than the field length, a SQL error results. The fol-
lowing statement illustrates this. Note that in this example the DAT1 field has a"field length"
of 9 (i.e. the length of the longest input string).

string —— , start

L , length A) }

W TH TEMP1 (LEN, DAT1) AS ANSVER
(4,0 12345) LEN DAT1 LDAT SUBDAT
(16,123 L
) 6 123456789 9 123456
SELECT LEN 4 12345 5 1234

, DAT1 <error>
, LENGTH(DAT1) AS LDAT
, SUBSTR(DAT1, 1, LEN) AS SUBDAT

FROM TEMPL;

Figure 312, SUBSTR function - error because length parmtoo long

The best way to avoid the above problem isto simply write good code. If that sounds too
much like hard work, try the following SQL.:

W TH TEMP1 (LEN, DAT1) AS ANSVER
(4,0 12345) LEN DAT1 LDAT SUBDAT
(16,123 y T Lo T
) 6 123456789 9 123456
SELECT LEN 4 12345 5 1234

, DAT1 16 123 3 123
, LENGTH(DAT1) AS LDAT
, SUBSTR(DAT1, 1, CASE
WHEN LEN < LENGTH(DAT1) THEN LEN
ELSE LENGTH(DAT1)
END) AS SUBDAT
FROM TEMPL;

Figure 313, SUBSTR function - avoid error using CASE (see previous)

In the above SQL a CASE statement is used to compare the LEN value against the length of
the DATL field. If the former islarger, it is replaced by the length of the latter.

If theinput is varchar, and no length value is provided, the output is varchar. However, if the
length is provided, the output is of type char - with padded blanks (if needed):

SELECT NAME ANSVEER
, |_ENGTH(NANE) AS LEN ————————————————————————=—=—=
, SUBSTR(NAME, 5) AS S1 NAVE LEN S1 L1 S2 L2
, LENGTH(SUBSTR(NAME, 5)) AS L1 = cmemeeee eee meee oo aa o
, SUBSTR(NAME, 5, 3) AS S2 Sander s 7 ers 3ers 3
, LENGTH(SUBSTR(NAME, 5, 3)) AS L2 Per nal 6 al 2 al 3
FROM STAFF Mar enghi 8 nghi 4 ngh 3
WHERE |ID < 60; O Brien 7 ien 3ien 3
Hanes 5s 1s 3

Figure 314, SUBSTR function - fixed length output if third parm. used

Scalar Functions 111

Graeme Birchall ©

TABLE

Thereisn't really a TABLE function, but thereis a TABLE phrase that returns aresult, one
row at atime, from either an externa (e.g. user written) function, or from a nested table ex-
pression. The TABLE phrase (function) has to be used in the latter case whenever thereisa
reference in the nested table expression to arow that exists outside of the expression. An ex-
amplefollows:

SELECT A 1D ANSVEER
, A. DEPT —————————————————————=—=—=—=
, A. SALARY | D DEPT SALARY DEPTSAL
,B.DEPTSAL e e emeeaoe aeeao e
FROM STAFF A 10 20 18357. 50 64286. 10
, TABLE 20 20 18171. 25 64286. 10
(SELECT B. DEPT 30 38 17506. 75 77285. 55

, SUM B. SALARY) AS DEPTSAL
FROM STAFF B
WHERE B.DEPT = A DEPT
GROUP BY B. DEPT
)AS B
WHERE A ID < 40
ORDER BY A. I D;

Figure 315, Full-select with external table reference

See page 32 for more details on using of the TABLE phrase in a nested table expression.

TABLE_NAME

Returns the base view or table name for a particular aias after al alias chains have been re-
solved. The output type is varchar(18). If the alias name is not found, the result is the input
values. There are two input parameters. The first, which is required, is the alias name. The
second, which is optional, is the alias schema. If the second parameter is not provided, the
default schemais used for the qualifier.

CREATE ALI AS EMP1 FOR EMPLOYEE; ANSVER

SELECT TABSCHEMA i eeeeea e oo

, TABNAME GRAEME EMPLOYEE -1
, CARD

FROM SYSCAT. TABLES

VWHERE TABNAME = TABLE_NAME(’ EMP2’ ,’ CRAEME');

Figure 316, TABLE_NAME function example

TABLE_SCHEMA

Returns the base view or table schema for a particular alias after al alias chains have been
resolved. The output type is char(8). If the alias name is not found, the result is the input val-
ues. There are two input parameters. The first, which isrequired, is the alias name. The sec-
ond, which is optional, is the alias schema. If the second parameter is not provided, the de-
fault schemais used for the qualifier.

Resolving non-existent Objects

Dependent aliases are not dropped when a base table or view is removed. After the base table
or view drop, the TABLE_SCHEMA and TABLE_NAME functions continue to work fine
(see the 1st output line below). However, when the alias being checked does not exist, the
original input values (explicit or implied) are returned (see the 2nd output line below).

112 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

CREATE VI EW FREDL (Cl, C2, 3) ANSVER
AS VALUES (11, " AAA' | ' BBB)‘ —————=———————=———=——=—————=—=—=—==

CREATE ALIAS FRED2 FOR FREDL; =mememmm memcmeoeocooooe
CREATE ALI AS FRED3 FOR FRED2: GRAEME FREDL

DROP VI EW FREDL;
W TH TEMPL (TAB_SCH, TAB NVE) AS
(VALUES (TABLE_SCHEMA(’ FRED3’ ,’ GRAEVME), TABLE_NAVE(' FRED3')),

(TABLE_SCHEMA(’ XXXXX') , TABLE_NAME(* XXXXX' ,’ XXX)))

SELECT *
FROM TEMP1;

Figure 317, TABLE_SCHEMA and TABLE_NAME functions example
TAN
Returns the tangent of the argument where the argument is an angle expressed in radians.

TANH

Returns the hyperbolic tan for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

TIME

Converts the input into atime value.

TIMESTAMP
Converts the input(s) into a timestamp value.
Argument Options
e If only one argument is provided, it must be (one of):
A timestamp value.
A character representation of atimestamp (the microseconds are optional).
A 14 byte string in the form: YYYYMMDDHHMMSS.
e If both arguments are provided:
The first must be a date, or a character representation of adate.

The second must be atime, or a character representation of atime.

SELECT TI MESTAMP(’ 1997-01-11-22. 44. 55. 000000’)
, TI MESTAMP(’ 1997- 01- 11- 22. 44. 55. 000")
, TI MESTAMP(’ 1997- 01- 11- 22. 44.55")
, TI MESTAMP(’ 19970111224455")
, TI MESTAMP(’ 1997-01- 11", 22. 44.55")
FROM STAFF
VHERE |D = 10;

Figure 318, TIMESTAMP function examples

TIMESTAMP_FORMAT

Takes an input string with the format: "YYYY-MM-DD HH:MM:SS' and convertsit into a
valid timestamp value. The VARCHAR_FORMAT function does the inverse.

Scalar Functions 113

Graeme Birchall ©

W TH TEMPL (TS1) AS
(VALUES (' 1999-12-31 23:59:59")
,(’ 2002-10- 30 11:22:33")

)
SELECT TS1
, TI MESTAMP_FORVAT(TS1, ' YYYY- MV DD HH24: M : SS') AS TS2
FROM TEMP1
ORDER BY TSI, ANSVEER

1999-12-31 23:59:59 1999-12-31-23.59. 59. 000000
2002-10-30 11:22:33 2002-10-30-11.22. 33. 000000

Figure 319, TIMESTAMP_FORMAT function example
Note that the only allowed formatting mask is the one shown.

TIMESTAMP_ISO

Returns atimestamp in the ISO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the
IBM internal format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If the input is a date, zeros are inserted
in the time part. If theinput isatime, the current date isinserted in the date part and zerosin
the microsecond section.

SELECT TML ANSVEER
FROM SCALAR; T™L 2

23:58: 58 2000-09-01-23. 58. 58. 000000
15:15: 15 2000- 09-01-15. 15. 15. 000000
00: 00: 00 2000-09-01-00. 00. 00. 000000

Figure 320, TIMESTAMP_1S0O function example

TIMESTAMPDIFF

Returns an integer value that is an estimate of the difference between two timestamp values.
Unfortunately, the estimate can sometimes be serioudly out (see the example below), so this
function should be used with extreme care.

Arguments

There are two arguments. The first argument indicates what interval kind is to be returned.
Valid options are:

1 = Microseconds. 2 = Seconds. 4 = Minutes.
8 =Hours. 16 = Days. 32 = Weeks.
64 = Months. 128 = Quarters. 256 = Years.

The second argument is the result of one timestamp subtracted from another and then con-
verted to character.

114 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

W TH TEMP1 (TS1, TS2) AS
(VALUES (’ 1996-03-01-00.00.01", ' 1995-03-01-00. 00. 00")
, (1 1996-03- 01- 00. 00. 00’ , * 1995- 03- 01-00. 00. 01"))
SELECT DF1
, TI MESTAMPDI FF(16, DF1) AS DI FF
DAYS(TS1) - DAYS(TS2) AS DAYS
FROM (SELECT TS1
, TS2
, CHAR(TS1 - TS2) AS DF1
FROM (SELECT TI MESTAMP(TS1) AS TSl
, TI MESTAMP(TS2) AS TS2
FROM TEMP1
) AS TEMP2 ANSVEER
)AS TEMP3; S-S =—=—======
DF1 DI FF DAYS
00010000000001. 000000 365 366
00001130235959. 000000 360 366

Figure 321, TIMESTAMPDIFF function example

WARNING: The microsecond interval option for TIMESTAMPDIFF has a bug. Do not use.
The other interval types return estimates, not definitive differences, so should be used with
care. To get the difference between two timestamps in days, use the DAYS function as
shown above. It is more accurate.

Roll Your Own

The SQL will get the difference, in microseconds, between two timestamp values. It can be
used as an alternative to the above function.

W TH TEMP1 (TS1, TS2) AS

(VALUES (' 1995-03-01-00. 12. 34. 000’ ,* 1995- 03- 01- 00. 00. 00. 000’)
, (" 1995-03-01-00. 12. 00. 034" , ' 1995- 03- 01- 00. 00. 00. 000"))

SELECT M5l

, VB2
'MBL - M52 AS DI FF
FROM (SELECT Bl G NT(DAYS(TS1) * 86400000000
+ M DNI GHT _SECONDS(TS1) * 1000000
+ M CROSECOND(TS1)) AS MS1
, Bl G NT(DAYS(TS2) * 86400000000
+ M DNI GHT _SECONDS(TS2) * 1000000

+ M CROSECOND(TS2)) AS Ms2
FROM (SELECT TI MESTAMP(TS1) AS TS1
, TI MESTAMP(TS2) AS TS2

FROM TEMP1
) AS TEMP2
) AS TEMP3
ORDER BY 1; ANSVER
M. M2 DFF

62929699920034000 62929699200000000 720034000
62929699954000000 62929699200000000 754000000

Figure 322, Difference in microseconds between two timestamps

TO_CHAR

Thisfunctionisasynonym for VARCHAR_FORMAT (see page 118). It converts atime-
stamp value into a string using a template to define the output layourt.

TO_DATE

Thisfunction isasynonym for TIMESTAMP_FORMAT (see page 113). It converts a char-
acter string value into a timestamp using atemplate to define the input layout.

Scalar Functions 115

Graeme Birchall ©

TRANSLATE

Convertsindividual charactersin either a character or graphic input string from one value to
another. It can also convert lower case data to upper case.

F TRANSLATE (—— string)
L , to, from L J ‘ }
, Substitute

Figure 323, TRANSLATE function syntax
Usage Notes

e Theuse of the input string alone generates upper case output.

¢ When "from" and "to" values are provided, each individual "from™" character in the input
string is replaced by the corresponding "to" character (if there is one).

» If thereisno "to" character for a particular "from" character, those charactersin the input
string that match the "from™ are set to blank (if thereis no substitute value).

» A fourth, optional, single-character parameter can be provided that is the substitute char-
acter to be used for those "from" values having no "to" value.

+ If there are more "to" characters than "from" characters, the additional "to" characters are
ignored.

ANS. NOTES
SELECT ' abcd’ ==> abcd No change

, TRANSLATE(" abcd’) ==> ABCD Make upper case

, TRANSLATE(" abcd’," ", a") ==> becd 'a'=>"

, TRANSLATE(' abcd’ ,” A" ," A") abcd ' A =>" A

, TRANSLATE(' abcd’ ," A", a’) Abcd 'a’ =>' A

, TRANSLATE(' abcd’ ,” A", " ab’) Acd’a =>"A,"b =>

, TRANSLATE(® abcd’ ,* A, " ab’,’ ") Acd a=>A, "b=>"
, TRANSLATE(' abcd’ ,” A", ab’,’ z") Azcd 'a’'=>"A','b' =>"7’
, TRANSLATE(' abcd’ ,” AB’'," a’) Abcd 'a’'=>" A

FROM STAFF
WHERE |D = 10;

Figure 324, TRANSLATE function examples
REPLACE vs. TRANSLATE - A Comparison

Both the REPLACE and the TRANSLATE functions alter the contents of input strings. They
differ in that the REPLA CE converts whole strings while the TRANSLATE converts multiple
sets of individual characters. Also, the "to" and "from" strings are back to front.

ANSVEER
SELECT C1 ==> ABCD
, REPLACE(CL, ' AB', ' XY") ==> XYCD
, REPLACE(CL1, ' BA",’ XY") ==> ABCD
, TRANSLATE(C1, ' XY, " AB') XYCD
, TRANSLATE(C1, ' XY’ ,’ BA") YXCD

FROM SCALAR
VWHERE Cl1 = ' ABCD ;

Figure 325, REPLACE vs. TRANSLATE

TRUNC or TRUNCATE

Truncates (not rounds) the rightmost digits of an input number (1st argument). If the second
argument is positive, it truncates to the right of the decimal place. If the second value is nega-

116 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

tive, it truncatesto the left. A second value of zero truncates to integer. The input and output
typeswill equal. To round instead of truncate, use the ROUND function.

ANSVEER
DL POS2 POS1 ZERO NEGL NEG2
W TH TEMP1(D1) AS 123. 400 123. 400 123.400 123.000 120.000 100. 000
(VALUES (123. 400) 23.450 23.440 23.400 23.000 20.000 0.000
, (23.450) 3.456 3.450 3.400 3.000 0.000 0.000
,(3.456) 0.056 0.050 0.000 0.000 0.000 0.000
 (. 056))
SELECT DI
, DEC(TRUNC(DL, +2), 6, 3) AS POS2
. DEC({ TRUNC(D1, +1) , 6, 3) AS POSL
, DEC(TRUNC(D1, +0) , 6, 3) AS ZERO
, DEC(TRUNC(DL, - 1), 6, 3) AS NEGL
, DEC(TRUNC(DL, - 2), 6, 3) AS NEG

FROM TEMP1
ORDER BY 1 DESC,

Figure 326, TRUNCATE function examples

TYPE_ID
Returns the internal type identifier of he dynamic data type of the expression.

TYPE_NAME
Returns the unqualified name of the dynamic data type of the expression.

TYPE_SECHEMA
Returns the schema name of the dynamic data type of the expression.

UCASE or UPPER

Coverts amixed or lower-case string to upper case. The output is the same data type and
length as the input.

SELECT NAME ANSVER
, LCASE(NA[\/E) AS LNANVE ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—=—=====
, UCASE(NAME) AS UNAME NANVE LNAME UNAME
FROM ' STAFF Ll ol Ll
WHERE ID < 30; Sanders sanders SANDERS

Per nal per nal PERNAL
Figure 327, UCASE function example

VALUE
Same as COALESCE.

VARCHAR

Converts the input (1st argument) to a varchar data type. The output length (2nd argument) is
optional. Trailing blanks are not removed.

Scalar Functions 117

Graeme Birchall ©

SELECT C1 ANSVEER
, LENGTH(Cl) AS L1 —————————m——m—=—=—=—==—=—=—=—===—=—
, VARCHAR(C1) AS V2 Cl L1 V2 L2 V3

, LENGTH(VARCHAR(C1)) AS L2
, VARCHAR(C1, 4) AS V3
SCALAR;

ABCDEF 6 ABCDEF 6 ABCD
ABCD 6 ABCD 6 ABCD
AB 6 AB 6 AB

FROM

Figure 328, VARCHAR function examples

VARCHAR_FORMAT

Converts atimestamp value into a string with the format: "YYYY-MM-DD HH:MM:SS".
The TIMESTAMP_FORMAT function does the inverse.
W TH TEMP1 (TS1) AS

(VALUES (Tl MESTAMP(’ 1999- 12- 31- 23.59. 59))
, (TI MESTAMP(’ 2002- 10- 30- 11. 22. 33’))

)
SELECT TS1
, VARCHAR_FORMAT(TS1, ' YYYY- MV DD HH24: M :SS') AS TS2
FROM TEMP1
CORDER BY TS1; ANSVEER

1999-12-31-23. 59. 59. 000000 1999-12-31 23:59:59
2002-10-30-11. 22. 33. 000000 2002-10-30 11:22:33

Figure 329, VARCHAR_FORMAT function example
Note that the only allowed formatting mask is the one shown.

VARGRAPHIC

Converts the input (1st argument) to a vargraphic data type. The output length (2nd argument)
isoptional.

VEBLOB_CP_LARGE

Thisis an undocumented function that IBM has included.

VEBLOB_CP_LARGE
Thisis an undocumented function that IBM has included.

WEEK

Returns avalue in the range 1 to 53 or 54 that represents the week of the year, where aweek
begins on a Sunday, or on the first day of the year. Valid input types are a date, a timestamp,
or an equivalent character value. The output is of type integer.

SELECT WEEK(DATE(’ 2000-01-01')) AS W ANSVEER
, V\EEK(DATE(»2000- 01- 02’)) AS W —————————————————=—
| W\EEK(DATE(’ 2001- 01- 02")) AS W8 W W W W VB
| EEK(DATE(’ 2000- 12-31')) AS W oD DD
| \\EEK(DATE(’ 2040- 12-31')) AS W6 1 2 1 54 53

FROM SYSI BM SYSDUMWY1;
Figure 330, WEEK function examples

Both the first and last week of the year may be partial weeks. Likewise, from one year to the
next, a particular day will often be in a different week (see page 263).

118

Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

WEEK_ISO

Returns an integer value, in the range 1 to 53, that isthe "1SO" week number. An 1SO week
differsfrom an ordinary week in that it begins on aMonday and it neither ends nor begins at
the exact end of the year. Instead, week 1 isthe first week of the year to contain a Thursday.
Therefore, it is possible for up to three days at the beginning of the year to appear in the last
week of the previous year. Aswith ordinary weeks, not all 1SO weeks contain seven days.

W TH

TEMPL (N) AS
(VALUES (0)
UNI ON ALL
SELECT N+1

FROM

TEMP1

WHERE N < 10),
TEMP2 (DT2) AS

(SELECT DATE(’ 1998-12-27') + Y. N YEARS
FROM

WHERE Y.N IN (0, 2))
SELECT CHAR(DT2, | SO)

FROM

TEMP1 Y
, TEMP1 D

+ D. N DAYS

DTE

, SUBSTR(DAYNAVE(DT2), 1,3) DY

, \EEK(DT2)

, DAYOFVEEK(DT2)
, WVEEK_| SO(DT2)
, DAYOFVEEK_| SO(DT2)

TEMP2

ORDER BY 1;

WK
DY
W
Di

Figure 331, WEEK _1SO function example

YEAR

1998- 12- 27
1998-12-28
1998-12- 29
1998-12- 30
1998-12-31
1999-01-01
1999-01-02
1999-01-03
1999-01-04
1999-01- 05
1999-01- 06
2000- 12- 27
2000- 12- 28
2000-12- 29
2000-12-30
2000-12-31
2001-01-01
2001-01-02
2001-01-03
2001-01-04
2001-01-05
2001-01-06

Thu
Fri

Sat
Sun
Mon
Tue
Wed
Thu
Fri

Sat

~NOURARWNREPNOORDWNRPNOORAWNE

[$)]
N
COURWNRFRPNOUORWWNRP~NOUORWNELN!

Returns a four-digit year value in the range 0001 to 9999 that represents the year (including
the century). Theinput is a date or timestamp (or equivalent) value. The output is integer.

SELECT DT1

FROM

, YEAR(DT1) AS YR
, VEEK(DT1) AS WK

SCALAR;

Figure 332, YEAR and WEEK functions example

Scalar Functions

04/ 22/ 1996
08/ 15/ 1996
01/ 01/ 0001

1996
1996

1

119

Graeme Birchall ©

120 Scalar Functions, Definitions

DB2 UDB V8.1 Cookbook ©

Order By, Group By, and Having

Introduction

The GROUP BY statement is used to combine multiple rows into one. The HAVING expres-
sion is where one can select which of the combined rows are to be retrieved. In this sense, the
HAVING and the WHERE expressions are very similar. The ORDER BY statement is used
to sequence the rows in the final outpuit.

Order By
’ ASC ’
F ORDER BY column name r }
column# LDESC —
expression —

Figure 333, ORDER BY syntax

The ORDER BY statement can only be applied to the final result set of the SQL statement.
Unlike the GROUP BY, it can not be used on any intermediate result set (e.g. a sub-query or
a nested-table expression). Nor can it be used in aview definition.

Sample Data
CREATE VI EW SEQ DATA(COL1, COL2) AS VALUES
("ab','xy’),("AB ,'xy'),("ac’,' XY),("AB ," XY), (" Ab’,"12");
Figure 334, ORDER BY sample data definition

Order by Examples

SELECT CO.1 ANSWER
y C(lz prm e ———
FROM SEQ DATA CcCoLl CcOoL2
ORDER BY COL1 ASC e e

, COL2; ab xy

ac XY

Ab 12

AB Xy

AB XY

Figure 335, Smple ORDER BY

Observe how in the above example al of the lower case data comes before the upper case
data. Usethe TRANSLATE function to display the data in case-independent order:

SELECT CO.1 ANSVER
y CO_Z ===
FROM SEQ _DATA CoLl coL2
ORDER BY TRANSLATE(COL1) ASC -eem oo

, TRANSLATE(COL2) ASC Ab 12

ab xy

AB XY

AB Xy

ac XY

Figure 336, Case insensitive ORDER BY

Order By, Group By, and Having 121

Graeme Birchall ©

One does not have to specify the column in the ORDER BY in the select list though, to the
end-user, the data may seem to be random order if one leavesit out:

SELECT COL2 ANSVER
FROM SEQ DATA ======
ORDER BY COLT coL2
, COL2;
xy
XY
12
Xy
XY

Figure 337, ORDER BY on not-displayed column

In the next example, the datais (primarily) sorted in descending sequence, based on the sec-
ond byte of the first column:

SELECT CO.1 ANSWER
y C(lz prm e ———
FROM SEQ DATA CoL1 COoL2
ORDER BY SUBSTR(COL1,2) DESC eeee a-e-
, QL2 ac XY
1 AB Xy
AB XY
Ab 12
ab xy

Figure 338, ORDER BY second byte of first column

If acharacter columnis defined FOR BIT DATA, the dataisreturned in internal ASCII se-
quence, as opposed to the standard collating sequence where’a’ <’A’<’b’<’B’. In ASCII se-
guence all upper case characters come before all lower case characters. In the following ex-
ample, the HEX function is used to display ordinary character datain bit-data order:

SELECT caL1 ANSVER
coL2

'HEX(COL2) AS HEX2 oD T T T

FROM SEQ DATA AB 4142 XY 5859
ORDER BY HEX(COL1) AB 4142 xy 7879
, HEX(COL2) Ab 4162 12 3132

Figure 339, ORDER BY in bit-data sequence

Arguably, either the BLOB or CLOB functions should be used (instead of HEX) to get the
datain ASCII sequence. However, when these two were tested (in DB2BATCH) they caused
the ORDER BY tofail.

Notes

» Specifying the same field multiple timesin an ORDER BY list isalowed, but silly. Only
the first specification of the field will have any impact on the data output order.

e Ifthe ORDER BY column list does not uniquely identify each row, those rows with du-
plicate values will come out in random order. Thisis almost always the wrong thing to do
when the data is being displayed to an end-user.

* Usethe TRANSLATE function to order data regardless of case. Note that thistrick may
not work consistently with some European character sets.

e NULL values always sort high.

122 Order By

DB2 UDB V8.1 Cookbook ©

Group By and Having

The GROUP BY statement is used to group individual rows into combined sets based on the
value in one, or more, columns. The GROUPING SETS clause is used to define multiple in-
dependent GROUP BY clausesin one query. The ROLLUP and CUBE clauses are short-
hand forms of the GROUPING SETS statement.

F GROUP BY £ expression ‘ }
- GROUPING SETS —(expression ‘) J
ROLLUP stmt (see below)—|
grand-total CUBE stmt (see below) —
T~ ()
I ROLLUP—(expression

)
(iéxpression l) J

I CUBE —(expression

)
(iéxpression l) J

—(-)

F HAVING

Figure 340, GROUP BY syntax

search-condition(s) }

GROUP BY Sample Data

CREATE VI EW EVMPLOYEE_VI EW AS ANSVEER
SELECT SUBSTR(WORKDEPT, 1, 1) AS D1 ==================
, WORKDEPT AS DEPT D1 DEPT SEX SALARY
, SEX AS SEX ee e aem e
, | NTEGER(SALARY) AS SALARY A A00 F 52750
FROM EMPLOYEE A A0 M 29250
VWHERE WORKDEPT < ' D20 ; A A0 M 46500
COW T, B BO1 M 41250
Cc Q1 F 23800
C Q1 F 28420
C Q1 F 38250
D D11 F 21340
SELECT * D D11 F 22250
FROM EMPLOYEE_VI EW D D11 F 29840
ORDER BY 1, 2, 3, 4; D D11 M 18270
D D11 M 20450
D D11 M 24680
D D11 M 25280
D D11 M 27740
D D11 M 32250

Figure 341, GROUP BY Sample Data

Simple GROUP BY Statements

A simple GROUP BY is used to combine individual rows into a distinct set of summary rows.

Order By, Group By, and Having 123

Graeme Birchall ©

Rules and Restrictions

e There can only be one GROUP BY per SELECT. Multiple select statementsin the same
query can each have their own GROUP BY..

» Everyfiddinthe SELECT list must either be specified in the GROUP BY, or must have
a column function applied against it.

e Theresult of asimple GROUP BY (i.e. with no GROUPING SETS, ROLLUP or CUBE
clause) is always a distinct set of rows, where the unique identifier is whatever fields
were grouped on.

e Thereisno guarantee that the rows resulting from a GROUP BY will come back in any
particular order, unless an ORDER BY is also specified.

« Variable length character fields with differing numbers on trailing blanks are treated as
equa in the GROUP. The number of trailing blanks, if any, in the result is unpredictable.

¢ When grouping, al null valuesin the GROUP BY fields are considered equal.
Sample Queries

In thisfirst query we group our sample data by the first three fieldsin the view:

SELECT D1, DEPT, SEX ANSVEER
, SUM SALARY) AS SALARY ——=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—======
" SMALLI NT(COUNT(*)) AS #ROWS DL DEPT SEX SALARY #ROWS
FROM EMPLOYEE VIEW e eeee ee e e oo
WHERE DEPT <> ' ABC A A0 F 52750 1
GROUP BY D1, DEPT, SEX A A0 M 75750 2
HAVI NG DEPT > A0 B BO1 M 41250 1
AND (SUM SALARY) > 100 C L F 90470 3
R M N(SALARY) > 10 D D11 F 73430 3
R COUNT(*) <> 22) D DI1 M 148670 6

ORDER BY D1, DEPT, SEX;
Figure 342, Smple GROUP BY

Thereis no need to have the afield in the GROUP BY in the SELECT list, but the answer
really doesn't make much sense if one does this:

SELECT SEX ANSVEER
, SUM SALARY) AS SALARY ————————————=—=—=—=
, SMALLI NT(COUNT(*)) AS #RONS SEX SALARY #ROW5
FROM EMPLOYEE VIEW e e e
VWHERE SEXIN ("F ,"M) F 52750 1
GROUP BY DEPT = 90470 3
, SEX F 73430 3
ORDER BY SEX; M 75750 2
M 41250 1
M 148670 6

Figure 343, GROUP BY on non-displayed field

One can also do aGROUP BY on aderived field, which may, or may not be, in the statement
SELECT list. Thisisan amazingly stupid thing to do:

SELECT SUM SALARY) AS SALARY ANSVER

, SVALLI NT(COUNT(*)) AS #ROAB ============
FROM EMPLOYEE_VI EW SALARY #ROWS
WHERE DL <>'X
GROUP BY SUBSTR(DEPT, 3, 1) 128500 3
HAVING COUNT(*) <> 99; 353820 13

Figure 344, GROUP BY on derived field, not shown

124 Group By and Having

DB2 UDB V8.1 Cookbook ©

One can not refer to the name of a derived column in a GROUP BY statement. Instead, one
has to repeat the actual derivation code. One can however refer to the new column namein an
ORDERBY':

SELECT SUBSTR(DEPT, 3, 1) AS WPART ANSVEER
, SUM SALARY) AS SALARY —==—=—==—============
, SMALLI NT(COUNT(*)) AS #RONS WPART SALARY #ROW5
FROM EWPLOYEE VIEW el oo
GROUP BY SUBSTR(DEPT, 3, 1) 1 353820 13
ORDER BY WPART DESC, 0 128500 3

Figure 345, GROUP BY on derived field, shown

GROUPING SETS Statement

The GROUPING SETS statement enable one to get multiple GROUP BY result sets from a
single statement. It isimportant to understand the difference between nested (i.e. in secondary
parenthesis), and non-nested GROUPING SETS sub-phrases:

¢ A nested list of columns works as asimple GROUP BY.

« A non-nested list of columns works as separate simple GROUP BY statements, which are
then combined in an implied UNION ALL:

GROUP BY GROUPI NG SETS ((A B, Q) is equivalent to GROUP BY A
, B
,C

GROUP BY GROUPI NG SETS (A, B, O is equivalent to GROUP BY A
UNI ON ALL
CROUP BY B
UNI ON ALL
GROUP BY C

GROUP BY GROUPI NG SETS (A (B, Q) is equivalent to GROUP BY A
UNI ON ALL

CROUP BY B

,BY C

Figure 346, GROUPING SETSin parenthesis vs. not

Multiple GROUPING SETS in the same GROUP BY are combined together as if they were
simplefieldsin a GROUP BY list:

GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A

, GROUPI NG SETS (B) . B

, GROUPI NG SETS (Q) , C

GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A
, GROUPI NG SETS ((B, Q) , B

,C

GROUP BY GROUPI NG SETS (A) is equivalent to GROUP BY A
, GROUPI NG SETS (B, O , B
UNI ON ALL

CROUP BY A

,C

Figure 347, Multiple GROUPING SETS

One can mix simple expressions and GROUPING SETS in the same GROUP BY :

GROUP BY A is equivalent to GROUP BY A
, GROUPI NG SETS ((B, 0)) B
,C
Figure 348, Smple GROUP BY expression and GROUPING SETS combined

Order By, Group By, and Having 125

Graeme Birchall ©

Repeating the same field in two parts of the GROUP BY will result in different actions de-
pending on the nature of the repetition. The second field reference isignored if a standard
GROUP BY isbeing made, and used if multiple GROUP BY statements are implied:

GROUP BY A is equivalent to GROUP BY A
, B , B

, GROUPI NG SETS ((B, Q) , C

GROUP BY A is equivalent to GROUP BY A
, B , B

, GROUPI NG SETS (B, O ,C
UNI ON ALL

GROUP BY A

, B

GROUP BY A is equivalent to GROUP BY A
, B , B

, C ,C

, GROUPI NG SETS (B, O UNI ON ALL

GROUP BY A

, B

,C

Figure 349, Mixing simple GROUP BY expressions and GROUPING SETS

A single GROUPING SETS statement can contain multiple sets of implied GROUP BY
phrases (obvioudly). These are combined using implied UNION ALL statements:

GROUP BY GROUPI NG SETS ((A, B, O is equivalent to GROUP BY A
(A B) , B
(9) ,C
UNI ON ALL
CROUP BY A

UNI ON ALL
GROUP BY C

GROUP BY GROUPI NG SETS ((A) is equivalent to GROUP BY A
, (B, O UNI ON ALL
(A GROUP BY B
VA , C
,((0)) UNI ON ALL
CROUP BY A
UNI ON ALL
CROUP BY A
UNI ON ALL
GROUP BY C

Figure 350, GROUPING SETSwith multiple components

The null-field list "()" can be used to get agrand total. Thisis equivalent to not having the
GROUPBY at al.

GROUP BY GROUPI NG SETS ((A B, O is equivalent to GROUP BY
(A B)

(A ,

() UNI ON ALL
GROUP BY A
, B

is equivalent to UNI ON ALL
GROUP BY A

UNI ON ALL

ROLLUP(A, B, C) grand-totl

Figure 351, GROUPING SET with multiple components, using grand-total

The above GROUPING SETS statement is equivalent to a ROLLUP(A,B,C), while the next
isequivalent to a CUBE(A,B,C):

Om>

126 Group By and Having

DB2 UDB V8.1 Cookbook ©

GROUP BY GROUPI NG SETS (, O is equivalent to GROUP BY
:)

UNI ON ALL
GROUP BY A

>m>>>
20E®

At
o3}

UNI ON ALL
GROUP BY A

NSNS AN AN AN

~

UNI ON ALL
CRCOUP BY B
is equivalent to ,C
UNI ON ALL
CROUP BY A
UNI ON ALL
CUBE(A, B, ©) GROUP BY B
UNI ON ALL
GROUP BY C
UNI ON ALL
grand-totl

Figure 352, GROUPING SET with multiple components, using grand-total
SQL Examples

Thisfirst example has two GROUPING SETS. Because the second isin nested parenthesis,
the result is the same as a simple three-field group by:

SELECT D1 ANSVEER
, DEPT ———=—=-=-=—-----—-————=—=——-=—=—=—=—====
, SEX D1 DEPT SEX SAL #R DF W SF
| SUM SALARY) AS SAL B L
" SMALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O
, GROUPI NG D1) AS F1 A A00 M 75750 2 0 0 O
, GROUPI NG DEPT) AS FD B BO1 M 41250 1 0 O O
, GROUPI NG SEX) AS FS C Q01 F 90470 3 0 O O

FROM EMPLOYEE_VI EW D D11 F 73430 3 0 0 O

GROUP BY CGROUPI NG SETS (D1) D D11 M 148670 6 0 O O

, GROUPI NG SETS ((DEPT, SEX))
ORDER BY D1

, DEPT

,» SEX;

Figure 353, Multiple GROUPING SETS, making one GROUP BY

NOTE: The GROUPING(field-name) column function is used in these examples to identify
what rows come from which particular GROUPING SET. A value of 1 indicates that the
corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

In the next query, the second GROUPING SET is not in nested-parenthesis. The query is
therefore equivalent to GROUP BY D1, DEPT UNION ALL GROUPBY D1, SEX:

SELECT D1 ANSVEER
, DEPT S ----—-=—=—=——=—=—=—=—==—========
, SEX D1 DEPT SEX SAL #R F1 FD FS
. SUM SALARY) AS SAL o e e e ce e e o
" SMALLI NT(COUNT(*)) AS #R A A0 - 128500 3 0 0 1
, GROUPI NG(D1) AS F1 A - F 52750 1 0 1 O
, GROUPI NG(DEPT) AS FD A - M 75750 2 0 1 O
, GROUPI NG(SEX) AS FS B BOl - 41250 1 0 0 1
FROM EMPLOYEE_VI EW B - M 41250 1 0 1 O
GROUP BY GROUPI NG SETS (D1) c <«Qo1 - 90470 3 0 0 1
, GROUPI NG SETS (DEPT, SEX) c - F 90470 3 0 1 O
ORDER BY D1 D D11 - 222100 9 0 0 1
, DEPT D - F 73430 3 0 1 O
, SEX; D - M 148670 6 0 1 O

Figure 354, Multiple GROUPING SETS, making two GROUP BY results

Order By, Group By, and Having 127

Graeme Birchall ©

It is generally unwise to repeat the same field in both ordinary GROUP BY and GROUPING
SETS statements, because the result is often rather hard to understand. To illustrate, the fol-
lowing two queries differ only in their use of nested-parenthesis. Both of them repeat the
DEPT fidld:

* Inthefirst, the repetition isignored, because what is created is an ordinary GROUP BY
on al three fields.

* Inthe second, repetition isimportant, because two GROUP BY statements are implicitly
generated. Thefirstison D1 and DEPT. The second ison D1, DEPT, and SEX.

SELECT D1 ANSVEER
, DEPT ——=—=—=—=-=—----——=—————-=———=—=—=—=—====
, SEX D1 DEPT SEX SAL #R F1 FD FS
, SUM SALARY) S
, SMALLI NT(COUNT(*)) AS #R A A00 F 52750 1 0 0 O
, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD B BO1 M 41250 1 0 O O
, GROUPI NG(SEX) AS FS C 01 F 90470 3 0 0 O
FROM EMPLOYEE VI EW D D11 F 73430 3 0 0 O
CRCOUP BY D1 D D11 M 148670 6 0 O O
, DEPT
, GROUPI NG SETS ((DEPT, SEX))
CRDER BY D1
, DEPT
» SEX;
Figure 355, Repeated field essentially ignored
SELECT D1 ANSVEER
, DEPT ——=—=—=—=-=—----——=—————-=———=—=—=—=—====
, SEX D1 DEPT SEX SAL #R F1 FD FS
, SUM SALARY) AS SAL s e e
, SMALLI NT(COUNT(*)) AS #R A A00 F 52750 1 0 0 O
, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD A A00 - 128500 3 0 0 1
, GROUPI NG SEX) AS FS B BO1 M 41250 1 0 O O
FROM EMPLOYEE VI EW B BO01 - 41250 1 0 0 1
GROUP BY D1 C 1 F 90470 3 0 0 O
, DEPT c o001 - 90470 3 0 0 1
, GROUPI NG SETS (DEPT, SEX) D D11 F 73430 3 0 0 O
CRDER BY D1 D D11 M 148670 6 0 O O
, DEPT D D11 - 222100 9 0 0 1
» SEX;
Figure 356, Repeated field impacts query result
The above two queries can be rewritten as follows:
GROUP BY D1 is equivalent to GROUP BY D1
, DEPT , DEPT
, GROUPI NG SETS ((DEPT, SEX)) SEX
GROUP BY D1 is equivalent to GROUP BY D1
, DEPT , DEPT
, GROUPI NG SETS (DEPT, SEX) SEX
UNI ON ALL
GROUP BY D1
, DEPT
, DEPT

Figure 357, Repeated field impacts query result

NOTE: Repetitions of the same field in a GROUP BY (as is done above) are ignored dur-
ing query processing. Therefore GROUP BY D1, DEPT, DEPT, SEX is the same as
GROUP BY D1, DEPT, SEX.

128 Group By and Having

DB2 UDB V8.1 Cookbook ©

ROLLUP Statement

A ROLLUP expression displays sub-totals for the specified fields. Thisis equivalent to doing
the original GROUP BY/, and a so doing more groupings on sets of the left-most columns.

GROUP BY ROLLUP(A, B, C ===> GROUP BY GROUPI NG SETS(EA, Bj o)
, (A B
(A
.0)
GROUP BY ROLLUP(C, B) ===> GROUP BY GROUPI NG SEI'S(%% B)
L 0)
GROUP BY ROLLUP(A) ===> GROUP BY GROUPI NG SEI'S(%A;

~

Figure 358, ROLLUP vs. GROUPING SETS
Imagine that we wanted to GROUP BY, but not ROLLUP onefield in alist of fields. To do
this, we simply combine the field to be removed with the next more granular field:

GROUP BY ROLLUP(A, (B, 0)) ===> GROUP BY GROUPI NG SEI'S‘(g ﬁi B, O
Figure 359, ROLLUP vs. GROUPING SETS)
Multiple ROLLUP statementsin the same GROUP BY act independently of each other:

GROUP BY ROLLUP(A) ===> GROUP BY GROUPI NG SETS((A, B, O
, ROLLUP(B, C) (A B)
(A
(B, O
,gB)

)
Figure 360, ROLLUP vs. GROUPING SETS

SQL Examples
Hereisastandard GROUP BY that gets no sub-totals:

SELECT DEPT ANSVER
, SUM SALARY) AS SALARY ——————————————————=—=
, SMALLI NT(COUNT(*)) AS #RONS DEPT SALARY #ROWS FD
' GROUPI NG{ DEPT) AS FD Lo TR T
FROM EMPLOYEE VI EW AO0 128500 30
GROUP BY DEPT BO1 41250 10
ORDER BY DEPT,; 1 90470 30
D11 222100 90

Figure 361, Smple GROUP BY

Imagine that we wanted to also get a grand total for the above. Below is an example of using
the ROLLUP statement to do this:

SELECT DEPT ANSVEER
, SUM SALARY) AS SALARY —=—=—=—=—=—=—=—=—=——=—=—=====
, SMALLI NT(COUNT(*)) AS #RONS DEPT SALARY #ROWS FD
, GROUPI NG(DEPT) AS FD eeee emmee eeee o
FROM EMPLOYEE VI EW AO0 128500 3 0
GROUP BY ROLLUP(DEPT) BO1 41250 1 0
ORDER BY DEPT,; 1 90470 3 0
D11 222100 9 0
- 482320 16 1

Figure 362, GROUP BY with ROLLUP

NOTE: The GROUPING(field-name) function that is selected in the above example re-
turns a one when the output row is a summary row, else it returns a zero.

Order By, Group By, and Having 129

Graeme Birchall ©

Alternatively, we could do things the old-fashioned way and use a UNION ALL to combine
the original GROUP BY with an all-row summary:

SELECT DEPT ANSVEER
, SUM SALARY) AS SALARY ——=—=—=—=—=—=—=—=—=—=========
, SMALLI NT(COUNT(*)) AS #ROWNS DEPT SALARY #ROWS FD
, GROUPI NG(DEPT) AS FD eeee eeemee eee -
FROM EMPLOYEE VI EW A00 128500 3 0
GROUP BY DEPT BO1 41250 1 0
UNI ON ALL 01 90470 3 0
SELECT CAST(NULL AS CHAR(3)) AS DEPT D11 222100 9 0
, SUM SALARY) AS SALARY - 482320 16 1

, SMALLI NT(COUNT(*)) AS #ROWS
, CAST(1 AS | NTEGER) AS FD
FROM EMPLOYEE_VI EW
ORDER BY DEPT;

Figure 363, ROLLUP done the old-fashioned way

Specifying afield both in the original GROUP BY, and in aROLLUP list simply resultsin
every data row being returned twice. In other words, the result is garbage:

SELECT DEPT ANSVEER
, SUM SALARY) AS SALARY —=—=—=—=—=—==—======—======
, SMALLI NT(COUNT(*)) AS #RONS DEPT SALARY #ROWS FD
' GROUPI NG DEPT) AS FD oo Toilo TITIT
FROM EMPLOYEE_VI EW AOO0 128500 3 0
GROUP BY DEPT AOO 128500 3 0
, ROLLUP(DEPT) BO1 41250 1 0
ORDER BY DEPT; BO1 41250 1 0
co1 90470 3 0
01 90470 3 0
D11 222100 9 0
D11 222100 9 0

Figure 364, Repeating a field in GROUP BY and ROLLUP (error)

Below is a graphic representation of why the data rows were repeated above. Observe that
two GROUP BY statements were, in effect, generated:

GROUP BY DEPT => GROUP BY DEPT => GROUP BY DEPT
, ROLLUP(DEPT) , GROUPI NG SETS((DEPT) UNI ON ALL
. 0) GROUP BY DEPT

()
Figure 365, Repeating a field, explanation

In the next example the GROUP BY,, is on two fields, with the second also being rolled up:

SELECT DEPT ANSVER
y SEX s ———
, SUM SALARY) AS SALARY DEPT SEX SALARY #ROWS FD FS
,SMALLI NT(COUNT(*)) AS #ROANB ~ ==ec ms= cmmmme meeoe o o-
, GROUPI NG(DEPT) AS FD AO0 F 52750 1.0 0
, GROUPI NG(SEX) AS FS ADO M 75750 2 00
FROM EMPLOYEE_VI EW A0 - 128500 3 0 1
GROUP BY DEPT BOI M 41250 1 0 0
, ROLLUP(SEX) BO1 - 41250 1 0 1
ORDER BY DEPT @1 F 90470 3 00
, SEX; @1 - 90470 3 0 1
DI1 F 73430 3 0 0
DI1 M 148670 6 0 0
DI1 - 222100 9 0 1

Figure 366, GROUP BY on 1st field, ROLLUP on 2nd

The next example does a ROLLUP on both the DEPT and SEX fields, which means that we
will get rows for the following:

» The work-department and sex field combined (i.e. the original raw GROUP BY).

130 Group By and Having

DB2 UDB V8.1 Cookbook ©

¢ A summary for al sexes within an individual work-department.

e A summary for al work-departments (i.e. a grand-total).

SELECT DEPT ANSVER
y SEX s ———————————————
, SUM SALARY) AS SALARY DEPT SEX SALARY #ROA8 FD FS
, SMALLI NT(COUNT(*)) AS #ROWS feee e e oo -
, GROUPI NG DEPT) AS FD AO0 F 52750 1 0 0
, GROUPI NG(SEX) AS FS AOO M 75750 2 0 0
FROM EMPLOYEE_VI EW A0 - 128500 3 0 1
GROUP BY ROLLUP(DEPT BO1I M 41250 1 0 0
, SEX) BOL1 - 41250 1 0 1
ORDER BY DEPT 1 F 90470 3 00
, SEX; 1 - 90470 3 0 1
DI1 F 73430 3 00
DI1 M 148670 6 0 O
DI1 - 222100 9 0 1
- - 482320 16 1 1

Figure 367, ROLLUP on DEPT, then SEX

In the next example we have reversed the ordering of fields in the ROLLUP statement. To
make things easier to read, we have also altered the ORDER BY sequence. Now get an indi-
vidual row for each sex and work-department value, plus a summary row for each sex:, plusa
grand-total row:

SELECT SEX ANSVEER
, DEPT S =——=——=—=—=—=—=—=—=—==—=========
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWS FD FS
" SMALLI NT(COUNT(*)) AS #ROAS e e e e N
, GROUPI NG(DEPT) AS FD F A0O0 52750 1 0 O
| GROUPI NG(SEX) AS FS F 01 90470 300
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY ROLLUP(SEX Fo- 216650 7 1 0
, DEPT) M A0O0 75750 2 0 0
ORDER BY SEX M BOl1 41250 1 0 O
, DEPT; M D11 148670 6 0 O
M- 265670 9 1 0
- - 482320 16 1 1

Figure 368, ROLLUP on SEX, then DEPT

The next statement is the same as the prior, but it uses the logically equivalent GROUPING
SETS syntax:

SELECT SEX ANSVEER
, DEPT ———————--=—=—=———=—=—=—=—=—=—=—=—=—====
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWAS FD FS
" SMALLI NT(COUNT(*)) AS #ROWS S LT B
, GROUPI NG DEPT) AS FD F A0O 52750 1 0 O
, GROUPI NG SEX) AS FS F co1 90470 3 0 O
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY GROUPI NG SETS ((SEX, DEPT) F - 216650 7 1 0
. (SEX) M A00 75750 2 0 0
O M B0l 41250 1.0 0
ORDER BY SEX M D11 148670 6 0 O
, DEPT; M- 265670 9 1 0
- - 482320 16 1 1

Figure 369, ROLLUP on SEX, then DEPT
The next example has two independent rollups. These work as follows:
» Thefirst generates a summary row for each sex.

¢ The second generates a summary row for each work-department.

Order By, Group By, and Having 131

Graeme Birchall ©

¢ Thetwo together make a (single) combined summary row of al matching data:

This query isthe same asa UNION of the two individua rollups, but it has the advantage of
being done in asingle pass of the data. The result is the same as a CUBE of the two fields:

SELECT SEX ANSVEER
, DEPT —===—=—=——=——=—=—=—=—=—=—=—=—=—=========
, SUM SALARY) AS SALARY SEX DEPT SALARY #ROWS FD FS
"SMALLI NT(COUNT(*)) AS #ROMNS === -mmm mmmmme mmmem e oo
, GROUPI NG(DEPT) AS FD F A0O0 52750 1 0 O
| GROUPI NG(SEX) AS FS F 01 90470 300
FROM EMPLOYEE_VI EW F D11 73430 3 0 O
GROUP BY ROLLUP(SEX) Fo- 216650 7 1 0
, ROLLUP(DEPT) M A0O0 75750 2 0 0
ORDER BY SEX M BOl1 41250 1 0 O
, DEPT; M D11 148670 6 0 O
M- 265670 9 1 0
- A0O0 128500 3 0 1
- BO1 41250 1 0 1
- Q01 90470 3 0 1
- D11 222100 9 0 1
- - 482320 16 1 1

Figure 370, Two independent ROLLUPS

Below we use an inner set of parenthesis to tell the ROLLUP to treat the two fields as one,
which causes us to only get the detailed rows, and the grand-total summary:

SELECT DEPT ANSVER
y SEX s ———
, SUM SALARY) AS SALARY DEPT SEX SALARY #ROWS FD FS
,SMALLI NT(COUNT(*)) AS #ROANB ~ ===c ms= cmmmme mmeoe oo o-
, GROUPI NG(DEPT) AS FD AO0 F 52750 1.0 0
, GROUPI NG{ SEX) AS FS A0 M 75750 2 0 0
FROM EMPLOYEE_VI EW BOI M 41250 1.0 0
GROUP BY ROLLUP((DEPT, SEX)) 1 F 90470 3 00
ORDER BY DEPT DI1 F 73430 3 00
, SEX; DI1 M 148670 6 0 0
- - 482320 16 1 1

Figure 371, Combined-field ROLLUP

The HAVING statement can be used to refer to the two GROUPING fields. For example, in
the following query, we eliminate all rows except the grand total:

SELECT SUM SALARY) AS SALARY ANSVEER
, SMALLI NT(COUNT(*)) AS #RONS ============
FROM EMPLOYEE_VI EW SALARY #ROWS
GROUP BY ROLLUP(SEX — eeeeee aemes
, DEPT) 482320 16
HAVING GROUPI NG(DEPT) = 1
AND GROUPING(SEX) = 1

ORDER BY SALARY;
Figure 372, Use HAVING to get only grand-total row

Below isalogically equivalent SQL statement:

SELECT SUM SALARY) AS SALARY ANSVEER
, SMALLI NT(COUNT(*)) AS #RO\B ============
FROM EMPLOYEE_VI EW SALARY #ROWS

GROUP BY GROUPING SETS(()); el i

482320 16
Figure 373, Use GROUPING SETSto get grand-total row
Hereis another:

132 Group By and Having

DB2 UDB V8.1 Cookbook ©

SELECT SUM SALARY) AS SALARY ANSVER
, SMALLI NT(COUNT(*)) AS #RONS ============
FROM EMPLOYEE_VI EW SALARY #ROWS
GROUP BY (); e e
482320 16
Figure 374, Use GROUP BY to get grand-total row
And another:
SELECT SUM SALARY) AS SALARY ANSVER
, SMALLI NT(COUNT(*)) AS #ROWS ============
FROM EMPLOYEE_VI EW SALARY #ROWS
482320 16

Figure 375, Get grand-total row directly

CUBE Statement

A CUBE expression displays a cross-tabulation of the sub-totals for any specified fields. As
such, it generates many more totals than the smilar ROLLUP.

GROUP BY CUBE(A, B, O ===> GROUP BY GROUPI NG SETS((Q E 0
(A O
(B, O
(A
(B)
(O
()

GROUP BY CUBE(C, B) ===> GROUP BY GROUPI NG SErS(Eg) B)
,(B)
()

GROUP BY CUBE(A) ===> GROUP BY GROUPI NG SETS(E

\./v

)
Figure 376, CUBE vs. GROUPING SETS

Aswith the ROLLLUP statement, any set of fieldsin nested parenthesisis treated by the
CUBE asasinglefield:

GROUP BY CUBE(A, (B, Q) ===> GROUP BY GROUPI NG SETS(()C)

—~~—
—~ >
\./v

Figure 377, CUBE vs. GROUPING SETS

Having multiple CUBE statementsis alowed, but very, very silly:

GROUP BY CUBE(A, B) ==> GROUPING SETS((A B,C), (A B), (A B, O, (A B)
, CUBE(B, C) ,(A'B, O, (A B),(ACQ, (A
(B9, (B), (B O, (B)
_ (B, O, (B), (9, ())
Figure 378, CUBE vs. GROUPING &ETS

Obviously, the aboveisalot of GROUPING SETS, and even more underlying GROUP BY
statements. Think of the query as the Cartesian Product of the two CUBE statements, which
are first resolved down into the following two GROUPING SETS:

* ((AB).(A)B).0)
+ ((B.,O.(B).(C).0)

Order By, Group By, and Having 133

Graeme Birchall ©

SQL Examples
Below is a standard CUBE statement:

SELECT D1 ANSVEER
, DEPT oS-SS ======
, SEX D1 DEPT SEX SAL #R F1 FD FS

, INT(SUM SALARY)) AS SAL e e e S e e -

, SMALLI NT(COUNT(*)) AS #R A A00 F 52750 1 0 0 O
, GROUPI NG D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD A A00 - 128500 3 0 0 1
, GROUPI NG SEX) AS FS A - F 52750 1 0 1 O
FROM EMPLOYEE_VI EW A - M 75750 2 0 1 O
GROUP BY CUBE(D1, DEPT, SEX) A - - 128500 3 0 1 1
CRDER BY D1 B BO1 M 41250 1 0 O O
, DEPT B BO01 - 41250 1 0 0 1
, SEX; B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C 01 F 90470 3 0 0 O
c o1 - 90470 3 0 0 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 0 O
D D11 M 148670 6 0 O O
D D11 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D - M 148670 6 0 1 O
D - - 222100 9 0 1 1
- AD0O F 52750 1 1 0 O
- A0 M 75750 2 1 0 O
- A00 - 128500 3 1 0 1
BO1 M 41250 1 1 O O
- BOo1 - 41250 1 1 0 1
- Q1 F 90470 3 1 0 O
- 001 - 90470 3 1 0 1
- D11 F 73430 3 1 0 O
- D11 M 148670 6 1 0 O
- D11 - 222100 9 1 0 1
- - F 216650 7 1 1 O
- - M 265670 9 1 1 O
- - - 482320 16 1 1 1
Figure 379, CUBE example
Hereis the same query expressed as GROUPING SETS;
SELECT D1 ANSVEER
, DEPT S =—=—=—=—========
, SEX D1 DEPT SEX SAL #R F1 FD FS
, I NT(SUM SALARY)) AS SAL . e e e -
, SMALLI NT(COUNT(*)) AS #R A A00 F 52750 1 0 0 O
, GROUPI NG D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD etc... (same as prior query)
, GROUPI NG(SEX) AS FS
FROM EMPLOYEE_VI EW
GROUP BY GROUPI NG SETS ((D1, DEPT, SEX)
, (D1, DEPT)
, (D1, SEX)
, (DEPT, SEX)
, (D1)
. (DEPT)
» (SEX)
()
CRDER BY D1
, DEPT
» SEX;

Figure 380, CUBE expressed using multiple GROUPING SETS

134 Group By and Having

DB2 UDB V8.1 Cookbook ©

Here is the same CUBE statement expressed as a ROLLUP, plus the required additional
GROUPING SETS:

SELECT D1 ANSVEER
, DEPT ———=—=-=-=—-----—-————=—=——-=—=—=—=—====
, SEX D1 DEPT SEX SAL #R F1 FD FS
"I NT(SUM SALARY)) AS SAL e D
" SMALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O
, GROUPI NG D1) AS F1 A A0 M 75750 2 0 0 O
, GROUPI NG(DEPT) AS FD etc... (sanme as prior query)
| GROUPI NG SEX) AS FS
FROM EMPLOYEE_VI EW
GROUP BY GROUPI NG SETS (ROLLUP(DL, DEPT, SEX)
. (DEPT, SEX)
. (SEX, DEPT)
. (D1, SEX))
ORDER BY D1
, DEPT
» SEX

Figure 381, CUBE expressed using ROLLUP and GROUPING SETS

A CUBE on alist of columns in nested parenthesis acts as if the set of columns was only one
field. The result is that one gets a standard GROUP BY (on the listed columns), plus arow
with the grand-totals:

SELECT D1 ANSVEER
, DEPT S ----—-=—=—=——=—=—=—=—==—========
, SEX D1 DEPT SEX SAL #R F1 FD FS

JINT(SUM(SALARY)) AS SAL ==-mmmmmmmmmem e

. SMALLI NT(COUNT(*)) AS #R A A0 F 52750 1 0 0 O

, GROUPI NG(D1) AS F1 A A0 M 75750 2 0 0 O

, GROUPI NG{ DEPT) AS FD B BOL M 41250 1 0 0 O

, GROUPI NG SEX) AS FS C 01 F 90470 3 0 0 O
FROM EMPLOYEE_ VI EW D DI1 F 73430 3 0 0 O
GROUP BY CUBE((D1, DEPT, SEX)) D DI1 M 148670 6 0 0 O
ORDER BY D1 - - - 48232016 1 1 1

, DEPT

» SEX;

Figure 382, CUBE on compound fields

The above query is resolved thus:

GROUP BY CUBE((A, B,C) => GROUP BY GROUI NG SETS ((A B, C) => GROUP BY A
() , B

. C

UNI ON ALL

GROUP BY()

Figure 383, CUBE on compound field, explanation

Complex Grouping Sets - Done Easy

Many of the more complicated SQL statements illustrated above are essentially unreadable
becauseit is very hard to tell what combinations of fields are being rolled up, and what are

not. There ought to be a more user-friendly way and, fortunately, there is. The CUBE com-

mand can be used to roll up everything. Then one can use ordinary SQL predicates to select
only those totals and sub-totals that one wants to display.

NOTE: Queries with multiple complicated ROLLUP and/or GROUPING SET statements
sometimes fail to compile. In which case, this method can be used to get the answer.

To illustrate this technique, consider the following query. It summarizes the datain the sam-
ple view by threefields:

Order By, Group By, and Having 135

Graeme Birchall ©

SELECT D1 AS D1 ANSVEER
, DEPT AS DPT o= =—=—=—======
, SEX AS SX D1 DPT SX SAL R

, NT(SUM SALARY)) AS SAL

, SVALLI NT(COUNT(*)) AS R A AO0 F 52750 1
FROM EMPLOYEE_VI EW A AOO M 75750 2
GROUP BY D1 B BOL M 41250 1
, DEPT C 1 F 90470 3
, SEX D D11 F 73430 3
ORDER BY 1, 2, 3; D DI1 M 148670 6

Figure 384, Basic GROUP BY example
Now imagine that we want to extend the above query to get the following sub-total rows:

DESI RED SUB- TOTALS EQUI VI LENT TO
DI, DEPT, and SEX. GROUP BY GROUPI NG SETS ((DL, DEPT, SEX)
D1 and DEPT. , (D1, DEPT)
D1 and SEX. , (D1, SEX)
D1. , (D1)
SEX. , (SEX)
Grand total. ()

GROUP BY ROLLUP(D1, DEPT)

, ROLLUP(SEX)

Figure 385, Sub-totals that we want to get

Rather than use either of the syntaxes shown on the right above, below we use the CUBE ex-
pression to get al sub-totals, and then select those that we want:

SELECT *
FROM (SELECT D1 AS D1
, DEPT AS DPT
, SEX AS SX
. I NT(SUM SALARY)) AS SAL
" SMALLI NT(COUNT(*)) AS #R
. SMALLI NT(GROUPI NG(D1)) AS Gl
" SMALLI NT(GROUPI NG{ DEPT)) AS GD
, SMALLI NT(GROUPI N SEX)) AS GS
FROM EMPLOYEE_VI EW ANSVEER
GROUP BY CUBE(D1, DEPT, SEX) ————————————————————————=—=—=—=
) AS XXX D1 DPT SX SAL #R GL GD GS
WHERE (GL, GD, GS) = (0,0, 0) LoD .
R (GL.GDGS) = (0.0 1) A AOF 52750 1 0 0 O
R (G, &GS =(0,1,0) A AOOM 75750 2 0 O O
R (GLGDGS) = (01 1) A A00 - 128500 3 0 0 1
R (GLGDGS = (1.1 0) A - F 52750 1 0 1 O
R (GLG@G) = (1.1.1) A - M 75750 2 0 1 0
CRDER BY 1, 2, 3; A - - 128500 3 0 1 1
B B0O1 M 41250 1 0 0 O
B BO1 - 41250 1 0 O 1
B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C CO01 F 90470 3 0 O O
Cc Q01 - 90470 3 0 0 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 O O
D D11 M 148670 6 0O 0 O
D D11 - 222100 9 0O O 1
D - F 73430 3 0 1 O
D - M 148670 6 O 1 O
D - - 222100 9 0 1 1
- - F 216650 7 1 1 O
- - M 265670 9 1 1 O
- - - 48232016 1 1 1

Figure 386, Get lots of sub-totals, using CUBE

136 Group By and Having

DB2 UDB V8.1 Cookbook ©

In the above query, the GROUPING function (see page 47) is used to identify what fields are
being summarized on each row. A value of one indicates that the field is being summarized;
while avalue of zero meansthat it is not. Only the following combinations are kept:

(Gl,GD,GS) = (0,0,0) <== D1, DEPT, SEX
(GL, GO, G =(0,0,1) <== D1, DEPT

(GL, G, G = (0,1,0) <== D1, SEX

(GL, GO, G =(0,1,1) <== DI,

(GL, G, G =(1,1,0) <== SEX,
(G,GE&,GS) =(1,1,1) <== grand total

Figure 387, Predicates used - explanation

Here is the same query written using two ROLLUP expressions. Y ou can be the judge as to
which isthe easier to understand:

SELECT D1 ANSVER
, DEPT o= =—=—=—=—=—=—=====
, SEX D1 DEPT SEX SAL #R

'INT(SUMSALARY)) AS SAL e dee oIl Lo

. SVALLI NT(COUNT(*)) AS #R A A0 F 52750 1

FROM EMPLOYEE VI EW A A0 M 75750 2
GROUP BY ROLLUP(DI, DEPT) A AO0 - 128500 3
, ROLLUP(SEX) A - F 52750 1

ORDER BY 1, 2, 3; A - M 75750 2
A - - 128500 3

B BO1L M 41250 1

B BOl - 41250 1

B - M 41250 1

B - - 41250 1

C 1 F 90470 3

cC o1 - 90470 3

cC - F 90470 3

C - - 90470 3

D DI1 F 73430 3

D DI1 M 148670 6

D DI1 - 222100 9

D - F 73430 3

D - M 148670 6

D - - 222100 9

- - F 216650 7

- - M 265670 9

- - - 482320 16

Figure 388, Get lots of sub-totals, using ROLLUP

Group By and Order By

One should never assume that the result of a GROUP BY will be a set of appropriately or-
dered rows because DB2 may choose to use a "strange” index for the grouping so asto avoid
doing arow sort. For example, if one says "GROUP BY C1, C2" and the only suitable index
ison C2 descending and then C1, the datawill probably come back in index-key order.
SELECT DEPT, JOB
, COUNT(*)
FROM STAFF

GROUP BY DEPT, JOB
ORDER BY DEPT, JOB;

Figure 389, GROUP BY with ORDER BY

NOTE: Always code an ORDER BY if there is a need for the rows returned from the query
to be specifically ordered - which there usually is.

Order By, Group By, and Having 137

Group By in Join

Graeme Birchall ©

We want to select those rowsin the STAFF table where the average SALARY for the em-
ployee’s DEPT is greater than $18,000. Answering this question reguires using a JOIN and
GROUP BY in the same statement. The GROUP BY will have to be donefirst, then its' result

will bejoined to the STAFF table.

There are two syntactically different, but technically similar, waysto write this query. Both
techniques use atemporary table, but the way by which thisis expressed differs. In the first

example, we shall use a common table expression:

W TH STAFF2(DEPT, AVGSAL) AS
(SELECT DEPT
, AVG(SALARY)
FROM STAFF
GROUP BY DEPT
HAVING AVG SALARY) > 18000

)
SELECT A ID
, A. NAVE
, A. DEPT
FROM STAFF A
, STAFF2 B
VWHERE A. DEPT = B. DEPT
ORDER BY A.ID;

ANSVEER

ID NAME DEPT
160 Mblinare 10
210 Lu 10
240 Dani el s 10
260 Jones 10

Figure 390, GROUP BY on one side of join - using common table expression

In the next example, we shall use a full-select:
SELECT A ID

, A. NAVE
, A. DEPT
FROM STAFF A
, (SELECT DEPT AS DEPT
, AVG(SALARY) AS AVGSAL

FROM STAFF
GROUP BY DEPT
HAVING AVG SALARY) > 18000
)AS B
WHERE A DEPT = B. DEPT
ORDER BY A. I D;

Figure 391, GROUP BY on one side of join - using full-select

COUNT and No Rows

ANSVEER

ID NAME DEPT
160 Mblinare 10
210 Lu 10
240 Dani el s 10
260 Jones 10

When there are no matching rows, the value returned by the COUNT depends upon whether

thisisa GROUP BY inthe SQL statement or not:

SELECT COUNT(*) AS Cl
FROM STAFF
WHERE ID < 1;

SELECT COUNT(*) AS Cl

FROM STAFF
VWHERE ID< 1
GROUP BY I D;

Figure 392, COUNT and No Rows

See page 257 for a comprehensive discussion of what happens when no rows match.

138

Group By and Having

DB2 UDB V8.1 Cookbook ©

Joins

A joinis used to relate sets of rowsin two or more logical tables. The tables are always joined
on arow-by-row basis using whatever join criteriaare provided in the query. The result of a
join is always a new, albeit possibly empty, set of rows.

In ajoin, the matching rows are joined side-by-side to make the result table. By contrast, in a
union (see page 173) the matching rows are joined (in a sense) one-above-the-other to make
the result table.

Why Joins Matter

The most important datain arelational database is not that stored in the individua rows.
Rather, it is the implied relationships between sets of related rows. For example, individual
rowsin an EMPLOY EE table may contain the employee ID and salary - both of which are
very important dataitems. However, it isthe set of al rowsin the same table that givesthe
gross wages for the whole company, and it is the (implied) relationship between the EM-
PLOYEE and DEPARTMENT tables that enables one to get a breakdown of employees by
department and/or division.

Joins are important because one uses them to tease the relationships out of the database. They
are also important because they are very easy to get wrong.

Sample Views

CREATE VI EW STAFF_V1 AS STAFF_V1 STAFF_V2
SELECT |1 D, NAME AR LR + +--mmemm - +
FROM STAFF | 1 D] NAMVE | [1DJOB |
WHERE | D BETWEEN 10 AND 30; [--]-------- | [--]------ |
| 10| Sanders | | 20| Sal es |
CREATE VI EW STAFF_V2 AS | 20| Pernal | | 30| A erk |
SELECT I D, JOB | 30| Mar enghi | | 30| Myr |
FROM STAFF A + | 40| sal es |
WHERE | D BETWEEN 20 AND 50 [50] Mgr |
UNI ON ALL R +
SELECT ID, "Cerk’ AS JOB
FROM STAFF

WHERE | D = 30;
Figure 393, Sample Views used in Join Examples

Observe that the above two views have the following characteristics:
« Both views contain rows that have no corresponding 1D in the other view.

* IntheV2view, there aretwo rowsfor ID of 30.

Join Syntax

DB2 UDB SQL comes with two quite different ways to represent ajoin. Both syntax styles
will be shown throughout this section though, in truth, one of the stylesis usually the better,
depending upon the situation.

Thefirst style, which isonly redlly suitable for inner joins, involves listing the tables to be
joined in a FROM statement. A comma separates each table name. A subsequent WHERE
statement constrains the join.

Joins 139

Graeme Birchall ©

SELECT ... FROM ;able name
L correlation name J

} L WHERE join and other predicates J }

Figure 394, Join Syntax #1
Here are some sample joins:

SELECT V1.1D JO N ANSVEER
, V1. NAVE ——————————————=—=—=
, V2.J0B | D NAME JOB
FROM STAFF_V1 Vi R i
, STAFF_V2 V2 20 Per nal Sal es
VWHERE Vi.ID = V2.1D 30 Marenghi derk
ORDER BY V1.I1D 30 Marenghi Myr
, V2. J0B;
Figure 395, Sample two-table join
SELECT V1.1D JO N ANSVEER
,V2.J0B —=—=—====—=—========
, V3. NAME 1D JOB NAME
FROM STAFF_V1 Vi1 B
, STAFF_V2 V2 30 derk Marenghi
, STAFF_V1 V3 30 Myr Mar enghi

VWHERE V1.1D = V2.1D
AND V2.1D = V3.I1D
AND V3. NAME LI KE ' M4

ORDER BY V1. NAMVE

, V2. J0B;

Figure 396, Sample three-table join

The second join style, which is suitable for both inner and outer joins, involves joining the
tables two at atime, listing the type of join as one goes. ON conditions constrain thejoin
(note: there must be at least one), while WHERE conditions are applied after the join and
congtrain the resullt.

INNER

F SELECT ... FROM — table name L J T | }
C. name LEFT
RIGHT L OUTER J
FULL

F JOIN — table name — ON — join predicates
L WHERE join & other predicates

Figure 397, Join Syntax #2
The following sample joins are logically equivalent to the two given above:

SELECT V1i.1D JO N ANSVER

, V1. NAVE ——————————————=—=—=

, V2.J0B I D NAMVE JOB
FROM STAFF_V1 Vi R
I NNER JO N 20 Per nal Sal es

STAFF_V2 V2 30 Marenghi derk

ON V1.ID = V2.1D 30 Marenghi Myr
ORDER BY V1.1D

, V2. J0B;

Figure 398, Sample two-table inner join

140 Join Syntax

DB2 UDB V8.1 Cookbook ©

SELECT V1.1D JO N ANSVER
, V3. NAME 1D JOB NAME

FROM STAFF. V1 V1 -
JON 30 derk Marenghi

STAFF_V2 V2 30 Myr Mar enghi
ON V1.1D = V2.1D
JO N

STAFF_V1 V3
ON V2.1D = V3.1D

VWHERE V3. NAME LI KE ' M4
ORDER BY V1. NAMVE
, V2. JOB;

Figure 399, Sample three-table inner join
ON vs. WHERE

A join written using the second syntax style shown above can have either, or both, ON and
WHERE checks. These two types of check work quite differently:

* WHERE checks are used to filter rows, and to define the nature of the join. Only those
rows that match all WHERE checks are returned.

¢ ON checks define the nature of the join. They are used to categorize rows as either joined
or not-joined, rather than to exclude rows from the answer-set, though they may do thisin
some situations.

Let illustrate this difference with asimple, if dightly silly, Ieft outer join:

SELECT * ANSVEER

FROM STAFF_V]_ V1 —=—=—=—===—==—=—=—=—=—=—=—=====

LEFT OQUTER JO N I D NAVE ID JOB
STAFF_V2 v2 e eeeemeas e aa- -

ON 1 =1 10 Sanders - -

AND V1.1D = V2.1D 20 Pernal 20 Sal es

ORDER BY V1.I1D 30 Marenghi 30 derk
, V2. J08B; 30 Marenghi 30 Mgr

Figure 400, Sample Views used in Join Examples
Now lets replace the second ON check with a WHERE check:

SELECT * ANSVEER

FROM STAFF_V]_ V1 ——=—=—=—==—===—==========

LEFT QUTER JO N I D NAME IDJCB
STAFF V2 V2 LD

ON 1 =1 20 Pernal 20 Sal es

VWHERE V1.ID = V2.1D 30 Marenghi 30 derk

ORDER BY V1.1D 30 Marenghi 30 Myr

, V2.J08B;
Figure 401, Sample Views used in Join Examples

In the first example above, all rows were retrieved from the V1 view. Then, for each row, the
two ON checks were used to find matching rowsin the V2 view. In the second query, all rows
were again retrieved from the V1 view. Then each V1 row was joined to every row in the V2
view using the (silly) ON check. Finaly, the WHERE check was applied to filter out al pairs
that do not match on ID.

Can an ON check ever exclude rows? The answer is complicated:

¢ Inaninnerjoin, an ON check can exclude rows because it is used to define the nature of
the join and, by definition, in an inner join only matching rows are returned.

Joins 141

Graeme Birchall ©

* Inapartia outer join, an ON check on the originating table does not exclude rows. It
simply categorizes each row as participating in the join or not.

« Inapartia outer join, an ON check on the table to be joined to can exclude rows because
if the row fails the test, it does not match the join.

e Inafull outer join, an ON check never excludes rows. It simply categorizes them as
matching the join or not.

Each of the above principles will be demonstrated as we look at the different types of join.

Join Types

A generic join matches one row with another to create a new compound row. Joins can be
categorized by the nature of the match between the joined rows. In this section we shall dis-
cuss each join type and how to codeit in SQL.

Inner Join

An inner-join is another name for a standard join in which two sets of columns are joined by
matching those rows that have equal data values. Most of the joins that one writes will proba
bly be of this kind and, assuming that suitable indexes have been created, they will almost
aways be very efficient.

STAFF_V1 STAFF_V2 I NNER- JO N ANSVER
B T + B S, + e ———————
| | D] NAME | [IDJOB | | D NAME ID JOB
|-- e e e oo T —========> = e e e mmmmme e ameaa
| 10| Sanders | | 20| Sal es | 20 Pernal 20 Sal es
| 20| Pernal | | 30| A erk | 30 Marenghi 30 Cerk
| 30| Mar enghi | | 30| Mgr [30 Marenghi 30 Mgr
Fomeieee - + | 40| Sal es |
|50 Myr |
.
Figure 402, Example of Inner Join
SELECT * ANSVEER
, STAFF_V2 V2 I D NAME ID JOB
VWHERE V1.ID=V2.ID el el il oo
ORDER BY V1.1D 20 Pernal 20 Sal es
, V2. J08B; 30 Marenghi 30 derk

30 Marenghi 30 Myr
Figure 403, Inner Join QL (1 of 2)

SELECT * ANSVEER

FROM STAFF_V]_ V1 —=—=—=—===—=—=—=—=—=—=—=—=—=====

I NNER JO N I D NAME ID JOB
STAFF_V2 v2 e eeeeoeee e aoe -

ON V1.1D = V2.1D 20 Pernal 20 Sal es

ORDER BY V1.I1D 30 Marenghi 30 derk
, V2. J0B; 30 Marenghi 30 Myr

Figure 404, Inner Join QL (2 of 2)
ON and WHERE Usage

In an inner join only, an ON and a WHERE check work much the same way. Both define the
nature of the join, and because in an inner join, only matching rows are returned, both act to
exclude all rows that do not match the join.

142 Join Types

DB2 UDB V8.1 Cookbook ©

Below isan inner join that uses an ON check to exclude managers:

SELECT * ANSVEER
FROM STAFF_V]_ V1 —=—=—=—===—==—=—=—=—=—=—=—=====
I NNER JO N I D NAVE ID JOB

STAFF_V2 V2 e R
ON Vi.ID = V2.1D 20 Pernal 20 Sal es
AND V2.J0B <> ' Myr’ 30 Marenghi 30 Cerk
CORDER BY V1.I1D

, V2. JOB;

Figure 405, Inner join, using ON check
Here is the same query written using a WHERE check

SELECT * ANSVEER
FROM STAFF_V]_ V1 ————=—=—=——=—==—=—=—=—=—=====
I NNER JO N | D NAME IDJOB
STAFF V2 V2 ce e ce e
ON V1.1D = V2.1D 20 Pernal 20 Sal es
VWHERE V2.JOB <> ' Myr’ 30 Marenghi 30 derk
CRDER BY V1.1D
, V2. J0B;

Figure 406, Inner join, using WHERE check

Left Outer Join

A left outer join isthe same as saying that | want al of the rows in the first table listed, plus
any matching rows in the second table:

STAFF_V1 STAFF_\2 LEFT- OQUTER- JO N ANSVER
B TS + B S, + s —————————
| | D] NAME | [IDjJOB | | D NAME ID JOB
| - | ________ | - - | ______ | —========> fe e e eaa- e ameo -
| 10| Sanders | | 20| Sal es | 10 Sanders - -
| 20| Pernal | | 30| A erk | 20 Pernal 20 Sal es
| 30| Mar enghi | | 30| Mgr [30 Marenghi 30 derk
R + | 40| Sal es | 30 Marenghi 30 Myr

| 50 Myr |

Fomm e e o +

Figure 407, Example of Left Outer Join
SELECT *
FROM STAFF_V1 V1
LEFT OQUTER JO N
STAFF_V2 V2

ON V1i.1D = V2.1D
ORDER BY 1, 4;

Figure 408, Left Outer Join SQL (1 of 2)

It is possible to code aleft outer join using the standard inner join syntax (with commas be-
tween tables), but it isalot of work:

SELECT V1.* <== This join gets all
, V2. * rows i n STAFF_V1

FROM STAFF_V1 V1 that match rows
, STAFF_V2 V2 in STAFF_V2.

VWHERE V1.1D = V2.1D

UNI ON

SELECT V1.* <== Thi s query gets
, CAST(NULL AS SMALLINT) AS ID all the rows in
, CAST(NULL AS CHAR(5)) AS JOB STAFF_V1 with no

FROM STAFF_V1 V1 mat chi ng rows

VHERE V1.1D NOT IN in STAFF_V2.
(SELECT | D FROM STAFF_V2)

ORDER BY 1, 4;

Figure 409, Left Outer Join SQL (2 of 2)

Joins 143

Graeme Birchall ©

ON and WHERE Usage

In apartial outer join (i.e. left or right), an ON check works differently, depending on what
table (field) it refersto:

- Ifitrefersto afield in the table being joined to, it determines whether the related row
matches the join or not.

« Ifitrefersto afieldin the table being joined from, it determines whether the related row
finds a match or not. Regardless, the row will be returned.

In the next example, those rows in the table being joined to (i.e. the V2 view) that match on
ID, and that are not for a manager are joined to:

SELECT * ANSVEER

FROM STAFF_V]_ V1 oo ———————————=—=—=

LEFT OUTER JO N | D NAMVE ID JOB
STAFF_V2 v2 e eeeemees e aa- -

ON Vi.ID = V2.1D 10 Sanders - -

AND V2.J0B <> ' Myr’ 20 Pernal 20 Sal es

ORDER BY V1.I1D 30 Marenghi 30 derk
, V2. J0B;

Figure 410, ON check on table being joined to

If we rewrite the above query using a WHERE check we will lose arow (of output) because
the check is applied after the join is done, and a null JOB does not match:

SELECT * ANSVEER
FROM STAFF_V]_ V1 —=—=—=—===—=—=—=—=—=—=—=—=—=====
LEFT OQUTER JO N I D NAVE ID JOB
STAFF V2 V2 oo
ON Vi.ID = V2.1D 20 Pernal 20 Sal es
V\HERE V2.J0B <> ' Myr’ 30 Marenghi 30 Cerk
CRDER BY V1.I1D
, V2. J0B;

Figure 411, WHERE check on table being joined to (1 of 2)
We could make the WHERE equivalent to the ON, if we also checked for nulls:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ——=—=—=—=—=—===—==========
LEFT OQUTER JO N | D NAME ID JOB
STAFF_V2 V2 ee eeeeeaee o oo
ON Vi.ID = V2.1D 10 Sanders - -
WHERE (V2.JOB <> 'Myr’ 20 Per nal 20 Sal es
oR V2.JOB IS NULL) 30 Marenghi 30 Cerk
ORDER BY V1.I1D
, V2. JOB;

Figure 412, WHERE check on table being joined to (2 of 2)

In the next example, those rows in the table being joined from (i.e. the V1 view) that match
on ID and have aNAME > 'N’ participate in the join. Note however that V1 rows that do not
participatein thejoin (i.e. ID = 30) are still returned:

SELECT * ANSVEER
FROM STAFF_V]_ V1 —=—=—=—===—=—=—=—=—=—=—=—=—=====
LEFT OQUTER JO N I D NAVE ID JOB
STAFF_V2 v2 e eeeemees e ao- -
ON Vi.ID = V2.1D 10 Sanders - -
AND V1. NAME > ' N 20 Pernal 20 Sal es
ORDER BY V1.I1D 30 Marenghi - -
, V2. J0B;

Figure 413, ON check on table being joined from

144 Join Types

DB2 UDB V8.1 Cookbook ©

If we rewrite the above query using a WHERE check (on NAME) wewill lose arow because
now the check excludes rows from the answer-set, rather than from participating in the join:

SELECT * ANSVEER
FROM STAFF_V]_ V1 —=—=—=—===—==—=—=—=—=—=—=—=====
LEFT QUTER JO N I D NAME ID JOB
STAFF_V2 v2 e eeeemeas e aoo -
ON V1.ID = V2.1D 10 Sanders - -
VWHERE V1. NAME > ' N 20 Pernal 20 Sal es
ORDER BY V1.I1D
, V2. J0B;

Figure 414, WHERE check on table being joined from

Unlike in the previous example, there is no way to alter the above WHERE check to make it
logically equivalent to the prior ON check. The ON and the WHERE are applied at different
times and for different purposes, and thus do completely different things.

Right Outer Join

A right outer join isthe inverse of aleft outer join. One gets every row in the second table
listed, plus any matching rows in thefirst table:

STAFF_V1 STAFF_V2 Rl GHT- QUTER- JO N ANSVEER
Feecceecn e + Feemceaaaa + e
| 1 D| NAVE | |1DJOB | | D NAME ID JOB
|-- i, e —========> 0 ee mmmmmmm e mm e mmm-
| 10| Sanders | | 20| Sal es | 20 Pernal 20 Sal es
| 20| Pernal | | 30| A erk | 30 Marenghi 30 derk
| 30| Mar enghi | | 30| Myr | 30 Marenghi 30 Mgr
e + | 40| Sal es | - - 40 Sal es
| 50| Myr [- - 50 Mr
S, +
Figure 415, Example of Right Outer Join
SELECT * ANSVEER
FROM STAFF_V]_ V1 ——————————————=——=—=—=—=—
RI GHT OQUTER JO N I D NAVE ID JOB
STAFF_V2 v2 e eeeeees e aa- -
ON V1.1D = V2.1D 20 Pernal 20 Sal es
ORDER BY V2.I1D 30 Marenghi 30 derk
, V2. J0B; 30 Marenghi 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 416, Right Outer Join SQL (1 of 2)
It isaso possible to code aright outer join using the standard inner join syntax:

SELECT V1. * ANSVEER

, V2. * ———=—=—=—=——=—=—=—=—=—=—=—==—===
FROM STAFF_V1 Vi | D NAME IDJOB

, STAFF_V2 V2 e eeemem e aoe e
WHERE V1i.1D = V2.1D 20 Pernal 20 Sal es
UNI ON 30 Marenghi 30 derk
SELECT CAST(NULL AS SMALLI NT) AS ID 30 Marenghi 30 Mgr

, CAST(NULL AS VARCHAR(9)) AS NANE o 40 Sal es

V2. % - 50 Myr
FROM STAFF_V2 V2

WHERE ~ V2.1D NOT IN
(SELECT | D FROM STAFF V1)
ORDER BY 3, 4;

Figure 417, Right Outer Join QL (2 of 2)

Joins 145

Graeme Birchall ©

ON and WHERE Usage

The rulesfor ON and WHERE usage are the same in aright outer join as they are for aleft
outer join (see page 144), except that the relevant tables are reversed.

Full Outer Joins

A full outer join occurs when all of the matching rows in two tables are joined, and there is
a so returned one copy of each non-matching row in both tables.

STAFF_V1 STAFF_V2 FULL- OQUTER- JO N ANSVEER
B T + B S, + s ————————
iIDiNANE i iIDiJGB i | D NAME IDJOB
B B ——=—=—=====> — - e e e e a - - - - - ==
| 10| Sanders | | 20| Sal es | 10 Sanders - -
| 20| Pernal | | 30| A erk | 20 Pernal 20 Sal es
| 30| Mar enghi | | 30| Mgr [30 Marenghi 30 derk
Fomeieee - + | 40| Sal es | 30 Marenghi 30 Myr
| 50| Mor [- - 40 Sal es
Hommenenn - - 50 Myr
Figure 418, Example of Full Outer Join
SELECT * ANSVEER
FROM STAFF_V]_ V1 ——=—=—=—=—=—===—==========
FULL OQUTER JO N | D NAME ID JOB
STAFF_V2 V2 S ek S -
ON V1.ID = V2.1D 10 Sanders - -
ORDER BY V1.1D 20 Pernal 20 Sal es
,V2.1D 30 Marenghi 30 derk
, V2. J0B; 30 Marenghi 30 Myr
- - 40 Sal es
- - 50 Myr
Figure 419, Full Outer Join SQL
Here is the same done using the standard inner join syntax:
SELECT V1. * ANSVEER
, V2. * ———=—=—=—=—=—=—=—=—=—==—=—=====
FROM STAFF_V1 Vi | D NAME ID JOB
, STAFF_V2 V2 S ek S -
VWHERE V1.ID = V2.1D 10 Sanders - -
UNI ON 20 Pernal 20 Sal es
SELECT V1.* 30 Marenghi 30 derk
, CAST(NULL AS SMALLINT) AS ID 30 Marenghi 30 Myr
, CAST(NULL AS CHAR(5)) AS JOB - - 40 Sal es
FROM STAFF_V1 V1 - - 50 Myr

WHERE ~ V1.1D NOT IN
(SELECT | D FROM STAFF_V2)

UNI ON

SELECT CAST(NULL AS SMALLINT) AS ID
, CAST(NULL AS VARCHAR(9)) AS NAME
V2. *

FROM STAFF V2 V2

WHERE ~ V2.1D NOT IN
(SELECT | D FROM STAFF_V1)

ORDER BY 1, 3, 4;

Figure 420, Full Outer Join SQL

The above is reasonably hard to understand when two tables are involved, and it goes down
hill fast as more tables are joined. Avoid.

ON and WHERE Usage

In afull outer join, an ON check is quite unlike a WHERE check in that it never resultsin a
row being excluded from the answer set. All it does is categorize the input row as being either

146 Join Types

DB2 UDB V8.1 Cookbook ©

matching or non-matching. For example, in the following full outer join, the ON check joins
those rows with equal key values:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ——————————————=——=—=—=—=—
FULL OUTER JO N | D NAMVE I D JOB
STAFF_V2 v2 e eeeemees e ao- -
ON V1.1D = V2.1D 10 Sanders - -
ORDER BY V1.I1D 20 Pernal 20 Sal es
,V2.1D 30 Marenghi 30 derk
, V2. J08B; 30 Marenghi 30 Mgr
- - 40 Sal es
- - 50 Myr

Figure 421, Full Outer Join, match on keys

In the next example, we have deemed that only those IDs that match, and that also have a
value greater than 20, are atrue match:

SELECT * ANSVEER
FROM STAFF_V]_ V1 oo ————————————=—=
FULL OUTER JO N | D NAMVE I D JOB
STAFF_V2 v2 e eeeeees e aao -
ON V1.1D = V2.ID 10 Sanders - -
AND V1.I1D > 20 20 Pernal - -
ORDER BY V1.I1D 30 Marenghi 30 derk
,V2.1D 30 Marenghi 30 Mgr
, V2. J0B; - - 20 Sal es
- - 40 Sal es
- - 50 Myr

Figure 422, Full Outer Join, match on keys> 20

Observe how in the above statement we added a predicate, and we got more rows! Thisis
because in an outer join an ON predicate never removes rows. It simply categorizes them as
being either matching or non-matching. If they match, it joins them. If they don't, it passes
them through.

In the next example, nothing matches. Consequently, every row is returned individually. This
query islogically similar to doing aUNION ALL on the two views:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ————=—=—=——=—==—=—=—=—=—=====
FULL OQUTER JO N | D NAME ID JOB
STAFF V2 V2 il il e i
ON V1.ID = V2.1D 10 Sanders - -
AND +1 = -1 20 Pernal - -
CRDER BY V1.1D 30 Marenghi - -
,V2.1D - - 20 Sal es
, V2. J0B; - - 30 Clerk
- - 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 423, Full Outer Join, match on keys (no rows match)

ON checks are somewhat like WHERE checks in that they have two purposes. Within atable,
they are used to categorize rows as being either matching or non-matching. Between tables,
they are used to define the fields that are to be joined on.

In the prior example, the first ON check defined the fields to join on, while the second join
identified those fields that matched the join. Because nothing matched (due to the second pre-
dicate), everything fell into the "outer join" category. This means that we can remove the first
ON check without altering the answer set:

Joins 147

Graeme Birchall ©

SELECT * ANSVER
FROM STAFF_V]_ V1 ——=—=—=—=—=—==—=—==========
FULL QUTER JO N I D NAME IDJOB
STAFF_V2 V2 eeeeeeaao i oo
N +1 = -1 10 Sanders - -
ORDER BY V1.1D 20 Pernal - -
,V2.1D 30 Marenghi - -
, V2. JOB; - - 20 Sal es
- - 30 Cerk
- - 30 Myr
- - 40 Sal es
- - 50 Myr

Figure 424, Full Outer Join, don't match on keys (no rows match)

What happensif everything matches and we don't identify the join fields? Theresult in a
Cartesian Product:

SELECT * ANSVER
FROM STAFF_V]_ V1 oo —————————=——=—=
FULL OUTER JO N | D NAME ID JOB
STAFF_ V2 v2 ee eeeeeeee o oo
ON +1 <> -1 10 Sanders 20 Sal es
CORDER BY V1.I1D 10 Sanders 30 derk
,V2.1D 10 Sanders 30 Myr
, V2. J0B; 10 Sanders 40 Sal es

10 Sanders 50 Myr
20 Pernal 20 Sal es

STAFF_V1 STAFF_V2 20 Pernal 30 derk

Fom e + e + 20 Pernal 30 Myr

| 1 Dl NAME [[1DJoB | 20 Pernal 40 Sal es

[--|-------- [[--]------ [20 Pernal 50 Myr

| 10| Sanders | | 20| Sal es | 30 Marenghi 20 Sal es

| 20| Pernal | | 30| A erk | 30 Marenghi 30 Cerk
30| Mar enghi | 30| Mgr 30 Marenghi 30 Mgr

I I
I + | 40| Sal es 30 Marenghi 40 Sal es

I

I

[30 Marenghi 50 Mgr
Fomm e e e oo - +

Figure 425, Full Outer Join, don't match on keys (all rows match)

In an outer join, WHERE predicates behave as if they were written for an inner join. In par-
ticular, they always do the following:

* WHERE predicates defining join fields enforce an inner join on those fields.

* WHERE predicates on non-join fields are applied after the join, which means that when
they are used on not-null fields, they negate the outer join.

Here is an example of a WHERE join predicate turning an outer join into an inner join:

SELECT * ANSVEER

FROM STAFF_V]_ V1 —=—=—=—===—=—=—=—=—=—=—=—=—=====

FULL JON I D NAVE ID JOB
STAFF_V2 v2 e eeeeoeee e aoe -

ON V1.1D = V2.1D 20 Pernal 20 Sal es

WHERE Vi.ID = V2.1D 30 Marenghi 30 derk

ORDER BY 1, 3, 4; 30 Marenghi 30 Myr

Figure 426, Full Outer Join, turned into an inner join by WHERE

To illustrate some of the complications that WHERE checks can cause, imagine that we want
todoaFULL OUTER JOIN on our two test views (see below), limiting the answer to those
rowswherethe"V1 ID" field isless than 30. There are severa ways to express this query,
each giving adifferent answer:

148 Join Types

DB2 UDB V8.1 Cookbook ©

STAFF_V1 STAFF_V2
S + B - + ANSVER
| 1 D] NAMVE [| 1D JOB [QUTER-JO N CRI TERI A ============
| -- | ________ | | - - | ______ | —==—=—==—============> ?2?7?. DEPENDS
| 10| Sanders | | 20| Sal es | V1.1D = V2.1D
| 20| Pernal | | 30| A erk | V1.1D < 30
| 30| Mar enghi | | 30| Mgr [
Fomeeee - + | 40| Sal es |
| 50 Myr |
B +

Figure 427, Outer join V1.ID < 30, sample data

In our first example, the "V 1.1D < 30" predicate is applied after the join, which effectively
eliminates all "V2" rows that don't match (because their "V 1.1D" value is null):

SELECT * ANSVEER

FROM STAFF_V]_ V1 ——=—=—=—==—===—==========

FULL JO N I D NAME IDJCB
STAFF V2 V2 il il oo

N V1.ID = V2.1D 10 Sanders - -

VHERE V1.I1D < 30 20 Pernal 20 Sal es

ORDER BY 1, 3, 4,
Figure 428, Outer join V1.ID < 30, check applied in WHERE (after join)

In the next example the "V 1.ID < 30" check is done during the outer join where it does not
any eliminate rows, but rather limits those that match in the two views:

SELECT * ANSVER
FULL JON | D NAME IDJOB
STAFF_ V2 V2 e el il oo
ON V1.1D = V2.I1D 10 Sanders - -
AND V1.1D < 30 20 Pernal 20 Sal es
CORDER BY 1, 3, 4; 30 Marenghi - -
- - 30 derk
- - 30 Myr
- - 40 Sal es
- 50 Myr

Figure 429, Outer join V1.ID < 30, check applied in ON (during join)

Imagine that what really wanted to have the "V 1.ID < 30" check to only apply to those rows
inthe"V1" table. Then one has to apply the check befor e the join, which requires the use of a
nested-table expression:

SELECT * ANSVEER
FROM (SELECT * —=—=—=—=—=—==—============
FROM STAFF_V1 | D NAME ID JOB
WHERE ID < 30) ASVl o e oo oo
FULL QUTER JO N 10 Sanders - -
STAFF_V2 V2 20 Per nal 20 Sal es
ON V1.ID = V2.1D - - 30 Clerk
ORDER BY 1, 3, 4; - - 30 Mr
- - 40 Sal es
50 Myr

Figure 430, Outer join V1.ID < 30, check applied in WHERE (before join)

Observe how in the above query we still got arow back with an ID of 30, but it came from
the "V 2" table. This makes sense, because the WHERE condition had been applied before we
got to thistable.

There are several incorrect ways to answer the above question. In the first example, we shall
keep al non-matching V2 rows by allowing to pass any null V1.ID values:

Joins 149

Graeme Birchall ©

SELECT * ANSVEER

FROM STAFF_V]_ V1 —————=—=——=—==—=—=—=—======

FULL OQUTER JO N | D NAME ID JOB

STAFF V2 V2 il il i i

ON V1.ID = V2.1D 10 Sanders - -

VWHERE Vi.1D < 30 20 Pernal 20 Sal es
R V1.1D IS NULL - - 40 Sal es

ORDER BY 1, 3, 4; - - 50 Myr

Figure 431, Outer join V1.ID < 30, (giveswrong answer - see text

There are two problems with the above query: First, it is only appropriate to use when the
V11D field is defined as not null, which it isin this case. Second, we lost the row in the V2
table where the ID equaled 30. We can fix this latter problem, by adding another check, but
the answer is still wrong:

SELECT * ANSVEER
FROM STAFF_V]_ V1 ————————=——————=—=—=—=—=—=—
FULL OUTER JO N | D NAMVE I D JOB
STAFF_V2 v2 e eeeemeos e ao- -
ON V1.ID = V2.1D 10 Sanders - -
VHERE V1.1D < 30 20 Pernal 20 Sal es
OoR V1.ID = V2.1D 30 Marenghi 30 derk
OR V1.ID IS NULL 30 Marenghi 30 Mgr
ORDER BY 1, 3, 4; - - 40 Sal es
- 50 Myr

Figure 432, Outer join V1.ID < 30, (giveswrong answer - see text)

The last two checks in the above query ensure that every V2 row isreturned. But they also
have the affect of returning the NAME field from the V 1 table whenever there is a match.
Given our intentions, this should not happen.

SUMMARY: Query WHERE conditions are applied after the join. When used in an outer

join, this means that they applied to all rows from all tables. In effect, this means that any
WHERE conditions in a full outer join will, in most cases, turn it into a form of inner join.

Cartesian Product

A Cartesian Product isaform of inner join, where the join predicates either do not exist, or
where they do a poor job of matching the keysin the joined tables.

STAFF_V1 STAFF_V2 CARTESI AN- PRODUCT
Fecccencn e + Feemceaaaa + o=
| 1 D| NAVE | [1DJOB | | D NAME ID JOB
B R e e SSSSDSSSE> e e e e e e mme e mmeaa
| 10| Sanders | | 20| sal es | | D NAME IDJOB
| 20| Pernal | [30|cerk | e eeeeeeae oo oo
| 30| Mar enghi | | 30| Myr | 10 Sanders 20 Sal es
N + | 40| Sal es | 10 Sanders 30 derk
| 50| Myr [10 Sanders 30 Myr

e + 10 Sanders 40 Sal es
10 Sanders 50 Myr
20 Pernal 20 Sal es
20 Pernal 30 derk
20 Pernal 30 Myr
20 Pernal 40 Sal es
20 Pernal 50 Myr
30 Marenghi 20 Sal es
30 Marenghi 30 derk
30 Marenghi 30 Myr
30 Marenghi 40 Sal es
30 Marenghi 50 Mgr

Figure 433, Example of Cartesian Product
Writing a Cartesian Product is simplicity itself. One simply omits the WHERE conditions:

150 Join Types

DB2 UDB V8.1 Cookbook ©

SELECT *

FROM STAFF_V1 Vi
, STAFF_V2 V2

ORDER BY V1.1D
,V2.1D
, V2. J0B;

Figure 434, Cartesian Product SQL (1 of 2)

One way to reduce the likelihood of writing afull Cartesian Product isto aways use the in-
ner/outer join style. With this syntax, an ON predicate is aways required. There is however
no guarantee that the ON will do any good. Witness the following example:

SELECT *
FROM STAFF_V1 Vi
INNER JO N
STAFF V2 V2
ON A <> ' B
ORDER BY V1.1D
,V2.1D
, V2. JOB;

Figure 435, Cartesian Product SQL (2 of 2)

A Cartesian Product is almost always the wrong result. There are very few business situations
where it makes sense to use the kind of SQL shown above. The good news s that few people
ever make the mistake of writing the above. But partial Cartesian Products are very common,
and they are also almost always incorrect. Here is an example:

SELECT V2A.1D ANSVER
y V2A. \]% b ——

V2B, 1D IDJOB ID

FROM STAFF V2 V2A Lo
, STAFF_V2 V2B 20 Sales 20

WHERE V2A. JOB = V2B.JOB 20 Sal es 40
AND V2A 1D < 40 30 Cerk 30
ORDER BY V2A. 1D 30 Myr 30
L V2B. 1 D; 30 Myr 50

Figure 436, Partial Cartesian Product SQL

In the above example we joined the two views by JOB, which is not a unique key. The result
was that for each JOB value, we got a mini Cartesian Product.

Cartesian Products are at their most insidious when the result of the (invalid) join isfeed into
aGROUPBY or DISTINCT statement that removes al of the duplicate rows. Below is an
example where the only clue that things are wrong is that the count is incorrect:

SELECT V2.JOB ANSWER
y COJNT(*) AS #ROWS —==—=—=======
FROM STAFF_V1 Vi1 JOB #RONS
,STAFF_ V2 V2 eeeee aaas
GROUP BY V2.J0B Clerk 3
ORDER BY #ROWS Mgr 6
, V2. J0B; Sal es 6

Figure 437, Partial Cartesian Product SQL, with GROUP BY

To really mess up with a Cartesian Product you may have to join more than one table. Note
however that big tables are not required. For example, a Cartesian Product of five 100-row
tables will result in 10,000,000,000 rows being returned.

HINT: A good rule of thumb to use when writing a join is that for all of the tables (except
one) there should be equal conditions on all of the fields that make up the various unique
keys. If this is not true then it is probable that some kind Cartesian Product is being done
and the answer may be wrong.

Joins 151

Graeme Birchall ©

Join Notes

Using the COALESCE Function

If you don't like working with nulls, but you need to do outer joins, then lifeistough. In an
outer join, fieldsin non-matching rows are given null values as placeholders. Fortunately,
these nulls can be eliminated using the COALESCE function.

The COALESCE function can be used to combine multiple fields into one, and/or to elimi-
nate null values where they occur. The result of the COALESCE is always the first non-null
value encountered. In the following example, the two ID fields are combined, and any null
NAME values are replaced with a question mark.

SELECT COALESCE(V1.ID, V2. 1D AS ID ANSVER
, COALESCE(V1. NAI\/E, el) AS NANVE ——————————————=—==
, V2.J0B | D NAME JOB
FROMV STAFF_V1 v1 e eeeeeee o oo -
FULL OQUTER JO N 10 Sanders -
STAFF_V2 V2 20 Pernal Sal es
ON V1.ID = V2.1D 30 Marenghi derk
ORDER BY V1.I1D 30 Marenghi Myr
, V2. J0B; 40 ? Sal es
50 ? Mgr

Figure 438, Use of COALESCE function in outer join

Listing non-matching rows only

Imagine that we wanted to do an outer join on our two test views, only getting those rows that
do not match. Thisis asurprisingly hard query to write.

STAFF_V1 STAFF_V2 ANSVEER
., + e e e e ma - + NON- MATCHI NG ——————————————————=
| 1 D] NAME | | 1D JoB | QUTER-JO N I D NAMVE ID JOB
| -- | ________ | | -- | ______ | —=====m====> 0 ee e e mm mmmm -
| 10| Sanders | | 20| sal es | 10 Sanders - -
| 20| Pernal | | 30| A erk | - - 40 Sal es
| 30| Mar enghi | | 30| Myr | - - 50 Mr
S + | 40| Sal es |
|50 Myr |
S +
Figure 439, Example of outer join, only getting the non-matching rows
One way to express the above is to use the standard inner-join syntax:
SELECT V1. * <== Cet all the rows
, CAST(NULL AS SMALLINT) AS ID in STAFF_V1 that
, CAST(NULL AS CHAR(5)) AS JOB have no mat chi ng
FROM STAFF_V1 Vi1 row i n STAFF_ V2.
WHERE V1.1D NOT IN
(SELECT | D FROM STAFF_V2)
UNI ON
SELECT CAST(NULL AS SMALLI NT) AS ID <== Cet all the rows
, CAST(NULL AS VARCHAR(9)) AS NAME in STAFF_V2 that
, V2. * have no matching
FROM STAFF_V2 V2 row i n STAFF_V1.

VWHERE V2.1D NOT I N
(SELECT | D FROM STAFF_V1)
ORDER BY 1, 3, 4,

Figure 440, Outer Join L, getting only non-matching rows

152 Join Notes

DB2 UDB V8.1 Cookbook ©

The above question can also be expressed using the outer-join syntax, but it requires the use
of two nested-table expressions. These are used to assign alabel field to each table. Only
those rows where either of the two labels are null are returned:

SELECT *
FROM (SELECT V1. * ,"VI' AS FLAG FROM STAFF_V1 V1) AS Vi
FULL OQUTER JO N
(SELECT V2. * , V2" AS FLAG FROM STAFF_V2 V2) AS V2
ON Vi.ID = V2.ID
WHERE V1. FLAG | S NULL ANSVEER
OoRrR V2. FLAG | S NULL ———————--—-——————-=—-=—=—=—=—=—====
CRDER BY V1.1D I D NAMVE FLAG I D JOB FLAG
Y B R ----
, V2. J0B; 10 Sanders V1 - - -
- 40 Sal es V2
- 50 Myr V2

Figure 441, Outer Join QL getting only non-matchi ng rows

Alternatively, one can use two common table expressions to do the same job:

W TH
V1 AS (SELECT V1.* ,"VI' AS FLAG FROM STAFF_V1 V1)
, V2 AS (SELECT V2. * , V2" AS FLAG FROM STAFF_V2 V2)
SELECT *
FROM V1 V1 ANSVEER
FULL OQUTER JO N ————————-=————————-=—=-=—=—=—=—=—====
V2 V2 I D NAMVE FLAG I D JOB FLAG
ON Vi.ID = V2.ID R R ----
WHERE V1. FLAG | S NULL 10 Sanders Vi - - -
R V2. FLAG | S NULL - 40 Sal es V2
CRDER BY V1.I1D, V2.1D, V2.J0B; - 50 Myr V2

Figure 442, Outer Join SQL, getting only non-matchi ng rows

If either or both of the input tables have afield that is defined as not null, then label fields can
be discarded. For example, in our test tables, thetwo ID fields will suffice:

SELECT * STAFF_V1 STAFF_V2
FROM STAFF_V1 Vi1 Fommmm e + Fo-mm- - +
FULL OUTER JO N | 1 D NAME | [1DJOB |
STAFF_V2 V2 [--]-------- | [--]------ |
N V1.ID = V2.1D | 10| Sanders | | 20| Sal es |
VHERE V1.1D IS NULL | 20| Per nal | | 30| A erk |
oR V2. 1D I S NULL | 30| Mar enghi | | 30| Myr |
ORDER BY V1.ID deeeeaaooon | 40| Sal es |
,V2.1D [50| Mgr |
, V2. J08B; SR +

Figure 443, Outer Join L, getting only non-matching rows

Join in SELECT Phrase

Imagine that we want to get selected rows from the V1 view, and for each matching row, get
the corresponding JOB from the V2 view - if there is one:

STAFF_V1 STAFF_V2 ANSVER
O, + o m e oo oo + LEFT QUTER JO N ————=—=—=—=—=—=—==—=—=—=====

[--|-------- | |--]------ | VI.ID = V2.1D ce e S e

| 10| Sanders | | 20| Sal es | V1.1D <> 30 10 Sanders - -
| 20| Pernal | | 30| A erk | 20 Pernal 20 Sales
| 30| Mar enghi | | 30| Myr [
----------- | 40| Sal es |
| 50 Myr |

Figure 444, Left outer join example

Joins 153

Graeme Birchall ©

Here is one way to express the above as a query:

SELECT V1.1D ANSVER
, V2.J0B I D NAME JoB
FROM STAFF_ V1 v1 e eeeeeee aooe
LEFT OQUTER JO N 10 Sanders -
STAFF_V2 V2 20 Pernal Sal es
ON V1.ID = V2.1D

VWHERE V1.1D <> 30
ORDER BY V1.1D ;

Figure 445, Outer Join donein FROM phrase of SQL

Below isalogically equivalent left outer join with the join placed in the SELECT phrase of
the SQL statement. In this query, for each matching row in STAFF_V 1, thejoin (i.e. the
nested table expression) will be done:

SELECT V1.1D ANSVER
, (SELECT V2.J0B I D NAMVE JB
FROM STAFF_V2 v2 e eeeeeeee aaoe-
WHERE V1.1D = V2.1 D) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Per nal Sal es

VWHERE V1.1D <> 30
ORDER BY V1.1 D,

Figure 446, Outer Join donein SELECT phrase of SQL
Certain rules apply when using the above syntax:

e Thenested table expression in the SELECT is applied after all other joins and sub-queries
(i.e. in the FROM section of the query) are done.

e Thenested table expression acts as a left outer join.
¢ Only one column and row (at most) can be returned by the expression.
e |f norow isreturned, the result isnull.

Given the above restrictions, the following query will fail because more than one V2 row is
returned for every V1 row (for ID = 30):

SELECT V1.1D ANSVER
, V1. NAVE ——————————————=—==
, (SELECT V2.J0B I D NAME JB
FROM STAFF_V2 V2 ee eeeeeeo oo
WHERE V1.1D = V2.1D) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Pernal Sal es
ORDER BY V1. 1D, <error>

Figure 447, Outer Join donein SELECT phrase of SQL - getserror

To make the above query work for all IDs, we have to decide which of the two matching JOB
values for ID 30 we want. Let us assume that we want the maximum:

SELECT V1.1D ANSVEER
, V1. NAMVE —=—=—=—=—=—=—=—==—=—==—====
, (SELECT NMAX(V2.J0B) I D NAME JB
FROM STAFF_ V2 V2 em eeeeaem oo
VWHERE V1.1D = V2.1 D) AS JB 10 Sanders -
FROM STAFF_V1 V1 20 Per nal Sal es
CRDER BY V1.1 D 30 Marenghi Myr

Figure 448, Outer Join donein SELECT phrase of SQL - fixed
The above is equivalent to the following query:

154 Join Notes

DB2 UDB V8.1 Cookbook ©

SELECT V1.1D ANSVEER

, MAX(V2.J0B) AS JB | D NAME JB
FROM STAFF V1 V1 Ll il -
LEFT QUTER JO N 10 Sanders -

STAFF_V2 V2 20 Pernal Sal es
ON Vi.ID = V2.1D 30 Marenghi Myr
GROUP BY V1.I1D

, V1. NAVE

ORDER BY V1.1D ;
Figure 449, Same as prior query - using join and GROUP BY

The above query is rather misleading because someone unfamiliar with the data may not un-
derstand why the NAME field isin the GROUP BY. Obviously, it is not there to remove any
rows, it smply needs to be there because of the presence of the MAX function. Therefore, the
preceding query is better because it is much easier to understand. It is also probably more
efficient.

CASE Usage

The SELECT expression can be placed in a CASE statement if needed. To illustrate, in the
following query we get the JOB from the V2 view, except when the person is a manager, in
which case we get the NAME from the corresponding row in the V1 view:

SELECT V2.1D ANSVEER
, CASE ————————=—=—=—
WHEN V2.J0B <> ' Myr’ 1D J2
THEN V2.J90B e e
ELSE (SELECT V1. NAME 20 Sal es
FROM STAFF_V1 Vi 30 Cerk
WHERE V1.1D = V2.1D) 30 Marenghi
END AS J2 40 Sal es
FROM STAFF_V2 V2 50 -
ORDER BY V2.1D
325

Figure 450, Sample Views used in Join Examples
Multiple Columns

If you want to retrieve two columns using this type of join, you need to have two independent
nested table expressions:

SELECT V2. 1D ANSVEER
,V2.J0B ——————————————=——=—=—=—=—
, (SELECT V1. NAME ID JOB NAVE N2
FROM STAFF. VL VI oo oo .o
WHERE V2.ID = V1.1D) 20 Sal es Pernal 6
, (SELECT LENGTH(V1. NAME) AS N2 30 Cerk Marenghi 8
FROM STAFF_V1 V1 30 Myr Marenghi 8
WHERE V2.1D = V1.1D) 40 Sal es - -
FROM STAFF_V2 V2 50 Myr - -
CRDER BY V2.1D
, V2. J0B;

Figure 451, Outer Join donein SELECT, 2 columns

An easier way to do the above isto write an ordinary |eft outer join with the joined columns
inthe SELECT list. Toillustrate this, the next query islogicaly equivalent to the prior:

Joins 155

Graeme Birchall ©

SELECT V2.1D ANSVEER
,V2.J0B ———=—=—=—=—=—=—==—=========
, V1. NAME ID JOB NAVE N2
, LENGTH(V1. NAME) AS N2 T --
FROM STAFF_V2 V2 20 Sal es Pernal 6
LEFT QUTER JO N 30 Clerk Marenghi 8
STAFF_V1 V1 30 Myr Marenghi 8
ON V2.1D = V1.1D 40 Sal es - -
CRDER BY V2.1D 50 Myr - -
, V2. J0B;

Figure 452, Outer Join donein FROM, 2 columns
Column Functions

Thisjoin style lets one easily mix and match individual rows with the results of column func-
tions. For example, the following query returns arunning SUM of the ID column:

SELECT V1.1D ANSVEER
, V1. NAVE ——————————————=—=—==
" (SELECT SUM X1. D) I D NAMVE SUM | D
FROM STAFF_V1 X1 R
WHERE X1.ID <= V1.ID 10 Sanders 10
)AS SUM I D 20 Pernal 30
FROM STAFF_V1 V1 30 Mar enghi 60
CRDER BY V1.1D
, V2. J0B;

Figure 453, Running total, using JOIN in SELECT
An easier way to do the same as the above isto use an OLAP function:

SELECT V1.1D ANSVER
, SUM | D) OVER(ORDER BY I D) AS SUM | D | D NAMVE SUM I D
FROM STAFF_V1 V1 L. Tl
ORDER BY V1.1D; 10 Sanders 10
20 Pernal 30
30 Mar enghi 60

Figure 454, Running total, using OLAP function

Predicates and Joins, a Lesson

Imagine that one wants to get all of therowsin STAFF V1, and to aso join those matching
rowsin STAFF_V2 where the JOB beginswith an’S":

STAFF_V1 STAFF_V2 ANSVEER
B + [S + oo —oo—
| | D NAVE | |1DJoB | OUTER-JON CRITERIA | D NAME JoB
e | | e ——=—=—=—=—=—=—=—=—=—=======> e,

| 10| Sanders | | 20| Sal es | V1.1D =V2.1D 10 Sanders -
| 20| Pernal | | 30| A erk | V2.JOB LIKE ' S% 20 Per nal Sal es
| 30| Mar enghi | | 30| Mgr [30 Marenghi -
Fomeieee - + | 40| Sal es |

|50 Myr |

Fomm e e e oo - +

Figure 455, Outer join, with WHERE filter

The first query below gives the wrong answer. It is wrong because the WHERE is applied
after the join, so eliminating some of the rowsin the STAFF V1 table:

156 Join Notes

DB2 UDB V8.1 Cookbook ©

SELECT V1.1D ANSVER (VRONG)
, V2.J0B I D NAME JoB
FROM STAFF V1 V1 il il oo
LEFT QUTER JO N 20 Pernal Sal es
STAFF_V2 V2
ON V1.1D = V2.1D

VWHERE V2.JOB LI KE ' S%
ORDER BY V1.I1D
, V2. JOB;

Figure 456, Outer Join, WHERE done after - wrong

In the next query, the WHERE is moved into a nested table expression - so it is done before
the join (and against STAFF_V 2 only), thus giving the correct answer:

SELECT V1.1D ANSWER
y Vl. NA'\E b ————————
, V2. JOB | D NAME JoB
FROM STAFF V1 V1 Lol Lo
LEFT QUTER JO N 10 Sanders -
(SELECT * 20 Pernal Sal es
FROM STAFF_VZ 30 Mar enghi -
VWHERE JOB LI KE ' S%
)AS V2
ON V1i.I1D = V2.1D
ORDER BY V1.I1D
, V2. JOB;

Figure 457, Outer Join, WHERE done before - correct

The next query does the join in the SELECT phrase. In this case, whatever predicates arein
the nested table expression apply to STAFF_V2 only, so we get the correct answer:

SELECT V1.1D ANSVEER
, (SELECT V2.J0B I D NAMVE JOB
FROM STAFF V2 V2 e e oo
VWHERE V1.1D = V2.1D 10 Sanders -
AND V2.JOB LIKE 'S%) 20 Per nal Sal es
FROMV STAFF_Vl V1 30 Mar enghi -
ORDER BY V1.1D
, JOB;

Figure 458, Outer Join, WHERE done independently - correct

Joins - Things to Remember

e Youget nullsin an outer join, whether you want them or not, because the fields in non-
matching rows are set to null. If they bug you, use the COALESCE function to remove
them. See page 152 for and example.

 Fromalogica perspective, all WHERE conditions are applied after the join. For per-
formance reasons, DB2 may apply some checks before the join, especialy in an inner
join, where doing this cannot affect the result set.

« All WHERE conditions that join tables act asif they are doing an inner join, even when
they are written in an outer join.

e TheON checksin afull outer join never remove rows. They simply determine what rows
are matching versus not (see page 146). To eliminate rowsin an outer join, one must use
aWHERE condition.

e TheON checksin a partial outer join work differently, depending on whether they are
against fields in the table being joined to, or joined from (see page 144).

Joins 157

Graeme Birchall ©

¢ A Cartesian Product is not an outer join. It isapoorly matching inner join. By contrast, a
true outer join gets both matching rows, and non-matching rows.

¢ TheNODENUMBER and PARTITION functions cannot be used in an outer join. These
functions only work on rowsin rea tables.

« Whenthejoinisdefined in the SELECT part of the query (see page 153), it is done after
any other joins and/or sub-queries specified in the FROM phrase. And it actsasif itisa
left outer join.

158 Join Notes

DB2 UDB V8.1 Cookbook ©

Sub-Query

Sub-queries are hard to use, tricky to tune, and often do some strange things. Consequently, a
lot of peopletry to avoid them, but this is stupid because sub-queries are redly, really, useful.
Using arelational database and not writing sub-queriesis almost as bad as not doing joins.

A sub-query is a specia type of full-select that is used to relate one table to another without
actually doing ajoin. For example, it lets one select all of the rows in one table where some
related value exists, or does not exist, in another table.

Sample Tables

Two tables will be used in this section. Please note that the second sample table has a mixture
of null and not-null values:

CREATE TABLE TABLEL TABLE1 TABLE2

(T1A CHAR(1) NOT NULL PO b e +

,T1B CHAR(2) NOT NULL | TIA| T1B| | T2A| T2B| T2

. PRIMARY KEY(T1A)); PR [B) et

COW T; [A [AA] |A |A |A |
|B [BB| [|B |A | - |

CREATE TABLE TABLE2 [C |CC| Hm-emecemn-- +

(T2A CHAR(1) NOT NULL Fooeio-- oo = null

,T2B CHAR(1) NOT NULL

. T2C CHAR(1)) ;

| NSERT | NTO TABLEL VALUES (A ,"AA),('B,’BB),('C,’ CC);
| NSERT | NTO TABLE2 VALUES (A ,"A ,"A), (B ,’ A, NULL);

Figure 459, Sample tables used in sub-query examples

Sub-query Flavours

Sub-query Syntax

A sub-query compares an expression against a full-select. The type of comparison doneisa
function of which, if any, keyword is used:

F expression =, <, >, <> ete ('subselect) 4}
SOME
ANY
ALL
EXISTS
L NOT J L IN

Figure 460, Sub-query syntax diagram

The result of doing a sub-query check can be any one of the following:
e True, inwhich case the current row being processed is returned.

« False, in which case the current row being processed is regjected.

* Unknown, which isfunctionally equivalent to false.

e A SQL error, dueto an invalid comparison.

Sub-Query 159

Graeme Birchall ©

No Keyword Sub-Query

One does not have to provide a SOME, or ANY, or IN, or any other keyword, when writing a
sub-query. But if one does not, there are three possible results:

* If norow in the sub-query result matches, the answer isfalse.
e If onerow in the sub-query result matches, the answer istrue.
¢ If more than one row in the sub-query result matches, you get a SQL error.

In the example below, the T1A field in TABLEL is checked to seeif it equals the result of the
sub-query (against T2A in TABLE?2). For the value "A" there is a match, while for the values
"B" and "C" thereis no match:

SELECT * ANSVEER
FROM TABLE1 =======
VWHERE TI1A = T1A T1B
(SELECT T2A e e
FROM TABLE2 A AA
WHERE T2A = 'A');
SUB-Q TABLElL TABLE2
RESLT +------- I +
+---+ | T1A| T1B| | T2A] T2B| T2C
2 I e e B e B B
[A [AA] A [A A |
A | B [BB|] [B [A | -|
+---+ |C |CC| +----------- +
Fo-em--- + "-" = null

Figure 461, No keyword sub-query, works

The next example gets a SQL error. The sub-query returns two rows, which the "=I" check
cannot process. Had an "= ANY" or an "= SOME" check been used instead, the query would
have worked fine:

SELECT * ANSVER
FROM TABLE